Investigation of the influence of magnetic fields on the degree of cleaning coked nozzles


Аuthors

Baklanov A. V.*, Vasilevich A. A.**, Chechnev R. A.***

Kazan National Research Technical University named after A.N. Tupolev, 10, Karl Marks str., Kazan, 420111, Russia

*e-mail: andreybaklanov@bk.ru
**e-mail: andreyvasilevich02@mail.ru
***e-mail: zenger4416@mail.ru

Abstract

Carbon deposition in the injectors fuel channels may occur in the gas turbine engine combustion chambers, which depends on both chemical and fraction content of the fuel. Operation of the combustion chamber with injectors subjected to carbon deposition leads to combustion processes changing in the flame tube, which in its turn may lead to the combustion chamber failure. Thus, technology development, which would allow performing the channels cleaning from the depositing products is up-to-date.

Up to date, diethylene glycol, sulphur trioxide and other solvents are being applied to remove hydrocarbons with strong inclination to carbonization. Ways for hydrocarbon fuels stability enhancing are being employed as well. Hydraulic cleaning is considered to be the most advanced method.

The article adduces the results of the study on the magnetic fields impact on the degree of fuel injector channels cleaning off fuel decomposition products. It describes the fuel injector design and provides he scheme of installation employed for the injector studies. Ьodes and parameters for conducting experiments are listed.

At the first stage, the initial flow characteristic of all four injectors was measured at fuel pressures range from 0 to 3 MPa by ten points. Then the injector flushing was performed by feeding electromagnet with AC (V = 28V, I = 1.9 A) for ten hours. The injector flow characteristic was measured after each hour of operating time.

Keywords:

combustion chamber, experiment, nozzle, gas turbine engine, coke deposition, magnetic fields

References

  1. Danil’chenko V.P., Lukachev S.V., Kovylov Yu.L. et al. Proektirovanie aviatsionnykh gazoturbinnykh dvigatelei (Design of aircraft gas turbine engines), Samara, Izd-vo SNTs RAN, 2008, 620 p.

  2. Markushin A.N., Baklanov A.V. Trudy MAI, 2018, no. 99. URL: http://trudymai.ru/eng/published.php?ID=91839

  3. Metechko L.B., Tikhonov A.I., Sorokin A.E., Novikov S.V. Trudy MAI, 2016, no. 85. URL: https://trudymai.ru/eng/published.php?ID=67495

  4. Durbin M.D., Vangsness M.D., Ballal D.R., Katta V.R. Study of Flame Stability in a Step Swirl Combustor, Journal of Engineering for Gas Turbines and Power, 1996, vol. 118, no. 2, pp. 308-315. DOI: 10.1115/1.2816592

  5. Markushin A.N., Baklanov A.V., Salimzyanova G.F. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2013, vol. 18, no. 1, pp. 90-94.

  6. Lefebvre A.H., Ballal D.R. Gas Turbine Combustion: Alternative Fuels and Emissions, 3rd ed., CRC Press, 2010, 537 pp.

  7. Eliseev Yu.S., Krymor V.V., Malinovskii K.A., Popov V.G. Tekhnologiya ekspluatatsii, diagnostiki i remonta gazoturbinnykh dvigatelei (Technology of operation, diagnostics and repair of gas turbine engines), Moscow, Vysshaya shkola, 2002, 355 p.

  8. Timofeev N.I. Konstruktsiya i letnaya ekspluatatsiya dvigatelya NK-8-2U. (The design and operation of the engine NK-8-2U), Moscow, Mashinostroenie, 1978, 118 p.

  9. Bolkhovitin M.S., Borovikov D.A., Ionov A.V., Seliverstov S.D. Trudy MAI, 2016, no. 91. URL: https://trudymai.ru/eng/published.php?ID=75612

  10. Markushin A.N., Merkushin V.K., Byshin V.M. Baklanov A.V. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2009, no. 3, pp. 50-53.

  11. Baklanov A.V. Aerospace MAI Journal, 2017, vol. 24, no. 3, pp. 13-22.

  12. Lefebvre A.H. Fuel effects on gas turbine combustion-ignition, stability, and combustion efficiency, Journal of Engineering for Gas Turbines and Power, 1985, vol. 107, no. 1, pp. 24-37. DOI: 1115/1.3239693

  13. Lieuwen T.C., Yang V. Combustion Instabilities in Gas Turbine Engines, Progress in Astronautics and Aeronautics, 2005, vol. 210, pp. 657. DOI: 10.2514/4.866807

  14. Kiesewetter F., Konle M., Sattelmayer T. Analysis of Combustion Induced Vortex Breakdown Driven Flashback in a Premix Burner with Cylindrical Mixing Zone, Journal of Engineering for Gas Turbines and Power, 2007, vol. 129, no. 4, pp. 929–936. DOI: 10.1115/1.2747259

  15. Schluter J., Schonfeld T., Poinsot T., Kreds W., Hoffmann S. Characterization of confined swirl flows using large eddy simulations. ASME Turbo Expo 2001. DOI: 10.1115/2001-GT-0060

  16. Harrison W.E., Zabarnick S. The OSD Assured Fuels Initiative—Military Fuels Produced from Coal. Presented at DoE Clean Coal Conference, Clearwater, FL, June 2007.

  17. Taylor S.C. Burning velocity and the influence of flame stretch. Ph.D. Thesis. University of Leeds, 1991, available at: http://etheses.whiterose.ac.uk/2099/

  18. Durbin M.D., Vangsness M.D., Ballal D.R., Katta V.R. Study of Flame Stability in a Step Swirl Combustor, Journal of Engineering for Gas Turbines and Power, 1996, vol. 118. no. 2, pp. 308-315. DOI: 10.1115/1.2816592

  19. Gokulakrishnan P., Fuller C.C., Klassen M.S. et al. Experiments and modeling of propane combustion with vitiation, Combustion and Flame, 2014, vol. 161, no. 8, pp. 2038-2053. DOI: 10.1016/j.combustflame.2014.01.024

  20. Gupta A.K., Lilley D.G., Syred Nick. Swirl Flows. Energy and engineering science series, Abacus Press, 1984, 475 p. DOI: 10.1016/0010-2180(86)90133-1


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход