Research of methods and development of algorithms for integration of navigation information


Аuthors

Ovakimyan D. N.*, Zelenskiy V. A.**, Kapalin M. V.***, Yereskin I. S.****

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: dd55@bk.ru
**e-mail: vaz-3@yandex.ru
***e-mail: no95typem@yandex.ru
****e-mail: sergeyeldoradotlt@gmail.com

Abstract

The issues of improving the accuracy and reliability of navigation information by combining signals received from different sources are considered. It is proposed to solve the problem using a modified Kalman filter selected as a result of a comparative analysis of known implementations in terms of accuracy and computational complexity. The software implementation of the algorithm is performed in the MAVROS environment. One of the most important tasks of the flight controller of an unmanned aerial vehicle is to evaluate the state vector. In general, this vector is multidimensional. The aim of the work is to select a method and develop an algorithm for determining the state vector by combining navigation information. The solution of the problem of aggregation of data obtained from independent sources is provided, as a rule, by nonlinear Kalman filtering. The classical algorithm is the extended Kalman filter EKF (extended Kalman filter), which is based on the linearization of the right part of the stochastic model to estimate the mathematical expectation of an unknown state vector and covariance matrix. EKF is one of the very first algorithms proposed for solving such problems. To date, there are more modern Kalman filters – sigma-point UKF (Unscented Kalman Filter), invariant extended IEKF (invariant extended Kalman filter), quadrature QKF. In this study, Nvidia Jetson Xavier NX was used as a hardware platform, which allows the use of resource-intensive algorithms for integrating navigation information. The use of special computing modules makes it possible to unload the flight controller and makes it relevant to study the effectiveness of modern Kalman filtering algorithms.

Keywords:

flight controller, algorithm, software, unmanned aerial vehicle

References

  1. Aleshin B.S., Afonin A.A., Veremeenko K.K. et al. Orientatsiya i navigatsiya podvizhnykh ob"ektov: sovremennye informatsionnye tekhnologii (Orientation and navigation of mobile objects: modern information technologies), Moscow, Fizmatlit, 2006, 421 p.

  2. Aleshin B.S., Antonov D.A., Veremeenko K.K. et al. Trudy MAI, 2012, no. 54. URL: https://trudymai.ru/eng/published.php?ID=29692

  3. Kuznetsov A.G. Trudy MAI, 2011, no. 45: URL: https://trudymai.ru/eng/published.php?ID=25425

  4. Lunev E.M. Trudy MAI, 2010, no. 45. URL: https://trudymai.ru/eng/published.php?ID=25431&PAGEN_2=2

  5. Alkhaddad Mukhammad. Aktual'nye problemy aviatsii i kosmonavtiki, 2016, vol. 1, no. 12, pp. 883-886.

  6. Saied M. BFA fuzzy logic based control allocation for fault-tolerant control of multirotor UAVs, Aeronautical Journal -New Series, 2019, no. 123 (1267), pp. 1356-1373. DOI:10.1017/aer.2019.58

  7. Savel'ev V.M., Antonov D.A. Trudy MAI, 2011, no. 45. URL: https://trudymai.ru/eng/published.php?ID=25497&PAGEN_2=2

  8. Alex G Quinchia, Gianluca Falco, Emanuela Falletti, Fabio Dovis. A Comparison between different error modeling of MEMS applied to GPS / INS integrated systems, Sensors (Basel), 24 July 2013, vol. 13, no. 3, pp. 9549-9588. DOI:10.3390/s130809549

  9. Liu Hong Dan, Shu Xiong Ying, Li Xi Sheng. Application of Strongly Tracking Kalman Filter In MEMS Gyroscope Bias Compensation, 6th International Conference on Advanced Materials and Computer Science, ISAMCS 2017. DOI: 10.23977/icamcs.2017.1004

  10. Tang. Pham Van, Thang Nguyen Van, Duc Anh Nguyen, Trinh Chu Duc. 15 – State Extended Kalman Filter Design for INS / GPS Navigation System, Journal of Automation and Control Engineering, January 2015, vol. 3, no. 2, pp. 109-114. DOI: 10.12720/joace.3.2.109-114

  11. Yan Chen, Dan Li, Yanhai Li, Xiaoyuan Ma. Use Moving Average Filter to Reduce Noises in Wearable PPG During Continuous Monitoring, EAI International Conference on Wearables in Healthcare, Budapest, Hungary, vol. eHealth 2016, LNICST 181, pp. 193-203. DOI: 10.1007/978-3-319-49655-9_26

  12. Mushfiqul Alam, Jan Rohac. Adaptive Data Filtering of Inertial Sensors with Variable Bandwidth, Sensors, February 2015, vol. 15, no. 2, pp. 3282-3298. DOI: 10.3390/s150203282

  13. Paola Pierleoni, Alberto Belli, Lorenzo Maurizi, Lorenzo Palma. A Wearable Fall Detector for Elderly People Based on AHRS and Barometric Sensor, Sensors, September 2016, vol. 16, no. 17, pp. 1-1. DOI: 10.1109/JSEN.2016.2585667

  14. Wenjiao Xiao, Zgu, Yu. An Unconventional Multiple Low-Cost IMU and GPS-Integrated Kinematic Positioning and Navigation Method Based on Singer Model, Sensors, October 2019, vol. 19, no. 19. DOI: 10.3390/s19194274

  15. Vishal Awasthi, Krishna Raj. A Comparison of Kalman Filter and Extended Kalman Filter in State Estimation, International Journal of Electronics Engineering, 2011, vol. 3, no. 1, pp. 67-71.

  16. Sukhomlinov D.V., Medved' A.N. Dvigatel', 2014, no. 5 (95), pp. 38-41.

  17. Dolgii O.V., Zhikh A.I., Grishchenko V.A. Nauchnye gorizonty, 2019, no. 4 (20), pp. 193–198.

  18. Vovasov V.E., Betanov V.V., Turlykov P.Yu. Trudy MAI, 2017, no. 96. URL: https://trudymai.ru/eng/published.php?ID=85834

  19. Kornilov A.V., Losev V.V. Vestnik Volzhskoi gosudarstvennoi akademii vodnogo transporta, 2017, no. 52, pp. 31-49.

  20. Lunev E.M., Pavlova N.V. Aerospace MAI Journal, 2009, vol. 16, no. 6, pp. 111-119.

  21. Watts A.C., Kobziar L.N., Percival H.F. Unmanned Aircraft Systems for Wildland Fire Monitoring and Research, Proceedings of the 24th Tall Timbers Fire Ecology Conference: The Future of Fire: Public Awareness, Health, and Safety, Tallahassee, FL, USA, 2009, pp. 86–90.

  22. Rui Xu, D. Wunsch. Survey of clustering algorithms, IEEE Transactions on neural networks and learning systems, 2005, vol. 16, no. 3, pp. 645.

  23. Shavin M.Yu. Trudy MFTI, 2019, vol. 11, no. 3, pp. 86-95.

  24. Jaroslaw Goslinski. EKF vs UKF — use case example. URL: https://jgoslinski.medium.com/ekf-vs-ukf-in-terms-of-an-ellipse-of-confidence-b51f6cb02da2

  25. Biswas S.K., Southwell B., Dempster A.G. Performance analysis of Fast Unscented Kalman Filters for Attitude Determination, IFAC-PapersOnLine, 2018, vol. 51, no. 1, pp. 697-701.

  26. Marion Pilte, Silvere Bonnabel, Frederic Barbaresco. Drone Tracking Using an Innovative UKF, 3rd conference on Geometric Science of Information (GSI 2017), Nov 2017, Paris, France.

  27. Guoshen Yu, Jean-Michel Morel. ASIFT: An Algorithm for Fully Affine Invariant Comparison, Image Processing On Line, 2011, no. 1, pp. 11–38. DOI:10.5201/ipol.2011.my-asift

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход