A method of operational assessment of survivability of multimode complex objects


Аuthors

Pavlov A. N.*, Gordeev A. V.*, Vorotyagin V. N.*

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: vka@mil.ru

Abstract

One of the urgent tasks of the structurally complex objects studying with their multi-mode functioning is the task of reliability and survivability indicators assessing with regard to the structural and functional specifics of modes implementation. The article demonstrates that the problem of the survivability index estimating for monotonous structurally complex objects by iterating through the functional states of the system and variants of destructive impacts refers to the super-complex combinatorial problems. This requires searching for the ways for the exhaustive search avoidance, including the one through the object operability polynomial application, which stores various topological properties of the structural and functional interaction of the system elements in the functioning modes implementation. Integral indicators of structural and functional reliability, as well as a formula for the operational approximate computing of structural and functional survivability values were introduced employing applying direct and dual parametric genome of the multimode object structure. The article considers the motion control system of a small spacecraft as a multi-mode complex object. Computations were performed and presented with an unknown cyclogram of the orientation modes implementation, and under conditions of spatial destructive impacts of the i-th multiplicity. In other words, by the result of one destructive impact, i failed elements, are observed simultaneously in the system; calculations of approximate values of structural and functional survivability indicators for various extreme conditions for the use of spacecraft orientation modes. Indicators of structural and functional reliability and survivability of multi-mode objects are proposed, which will allow analyzing and evaluating the properties of reliability and survivability of a particular configuration option during system degradation.

Keywords:

multi-mode complex object, structural and functional survivability, parametric structure genome

References

  1. Pavlov A.N., Pavlov D.A., Vorotyagin V.N. // Intellektual'nye tekhnologii na transporte, 2020, no. 1 (21), pp. 32-39.

  2. Cherkesov G.N., Nedosekin A.O. Nadezhnost', 2016, vol. 16, no. 2 (57), pp. 3-15.

  3. Borodin V.V. Trudy MAI, 2012, no. 58. URL: https://trudymai.ru/eng/published.php?ID=33036

  4. Cherkesov G.N., Nedosekin A.O., Vinogradov V.V. Nadezhnost', 2018, vol. 18, no. 2, pp. 17-24.

  5. Pavlov A.N., Goncharov A.M., Vorotyagin V.N. Trudy Voenno-kosmicheskoi akademii imeni A.F. Mozhaiskogo, 2020, no. 673, pp. 7-17.

  6. Bykov A.P., Piganov M.N. Trudy MAI, 2021, no 116. URL: https://trudymai.ru/eng/published.php?ID=121012. DOI: 10.34759/trd-2021-116-05

  7. Vasil'kov Yu.V., Timoshenko A.V., Sovetov V.A., Kirmel' A.S. Trudy MAI, 2019, no. 108. URL: https://trudymai.ru/eng/published.php?ID=109557. DOI: 10.34759/trd-2019-108-16

  8. Kini R.L., Raifa Kh. Prinyatie reshenii pri mnogikh kriteriyakh: predpochteniya i zameshcheniya (Decision–making under many criteria: preferences and substitutions), Moscow, Radio i svyaz', 1981, 560 p.

  9. Kirilin A.N., Akhmetov R.N., Shakhmatov E.V. et al. Opytno-tekhnologicheskii malyi kosmicheskii apparat “AIST-2D” (Experimental and technological small spacecraft "AIST-2D": monograph), Samara, SamNTs RAN, 2017, 324 p.

  10. Kovtun V.S. Kosmonavtika i raketostroenie, 2017, no. 4(97), pp. 143-157.

  11. Manuilov Yu.S., Kalinin V.N., Goncharevskii V.S. et al. Upravlenie kosmicheskimi apparatami i sredstvami nazemnogo kompleksa upravleniya (Control of spacecraft and ground control complex facilities.), Saint Petersburg, VKA imeni A.F. Mozhaiskogo, 2010, 609 p.

  12. Polenin V.I., Ryabinin I.A., Svirin S.K., Gladkova I.A. Primenenie obshchego logiko–veroyatnostnogo metoda dlya analiza tekhnicheskikh, voennykh organizatsionno–funktsional'nykh sistem i vooruzhennogo protivoborstva (Application of the general logical–probabilistic method for the analysis of technical, military organizational and functional systems and armed confrontation: monograph), Sant Petersburg, SPb RAEN, 2011, 416 p.

  13. Pavlov A.N., Pavlov D.A., Umarov A.B., Gordeev A.V. Informatika i avtomatizatsiya, 2022, vol. 21, no. 4, pp. 812-845. DOI: 10.15622/ia.21.4.7

  14. Pavlov A.N., Slin'ko A.A., Vorotyagin V.N. Informatsiya i Kosmos, 2019, no. 2, pp. 139-147.

  15. Akimov E.V., Kuznetsov M.N. Trudy MAI, 2010, no. 40. URL: https://trudymai.ru/eng/published.php?ID=22873

  16. Aleshin E.N., Zinov'ev S.V., Kopkin E.V. et al. Sistemnyi analiz organizatsionno-tekhnicheskikh sistem kosmicheskogo naznacheniya (System analysis of organizational and technical systems for space purposes), Saint Petersburg, VKA imeni A.F. Mozhaiskogo, 2018, 370 p.

  17. Cherkesov G.N., Nedosekin A.O., Vinogradov V.V Nadezhnost', 2018, vol. 18, no. 2, pp. 17-24.

  18. Pavlov A.N., Pavlov D.A., Aleshin E.N. et al. Trudy Voenno-kosmicheskoi akademii imeni A.F. Mozhaiskogo, 2021, no. 677, pp. 186-194.

  19. Shubinskii I.B. Funktsional'naya nadezhnost' informatsionnykh sistem. Metody analiza (Functional reliability of information systems. Methods of analysis), Moscow, Izd-vo “Zhurnal Nadezhnost'”, 2012, 297 p.

  20. Shubinskii I.B. Nadezhnye otkazoustoichivye informatsionnye sistemy. Metody sinteza (Reliable fault-tolerant information systems. Methods of synthesis), Moscow, Izd-vo “Zhurnal Nadezhnost'”, 2016, 544 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход