Determination of the optimal way to increase the inner radius of a thick-walled cylindrical coupling made of shape memory alloy


Аuthors

Sharunov A. V.

PJSC UAC Sukhoi Design Bureau, 23A, Polikarpova str., Moscow, 125284, Russia

e-mail: aleksej-sharunov@yandex.ru

Abstract

One of the most promising applications of SMAin the aviation industry is the manufacture of couplings from them designed for thermomechanical connection (TMC) of pipelines. Currently, in the Sukhoi Design Bureau, an analysis of the possibility of using the above alloys in the hydraulic system of the aircraft has been carried out, zones of preferred use of SMA couplings in the airframe design have been identified (“dry zones”, “embedded zones” under composite panels). The use of coupling joints from SMA was also considered for carrying out repair work of fuel and hydraulic systems of aircraft directly in the places of basing and operation of aircraft.

As part of the work, mathematical models of SMA material were developed in the Simulia AbaQus finite element modeling software package, capable of describing the functional properties of SMA implemented during the entire life cycle of a coupling made of this material. In addition, the models have a high level of availability and can be used in solving most technical projects for the introduction of SMA elements into the design of aircraft, including when designing thermomechanical connections using couplings made of this material. Two alternative ways of increasing the internal radius of the SPF coupling are also proposed, a comparison with the currently used dorning method is carried out, and the optimal approach is identified.

The reliability of the results of the work is confirmed by the validation of the developed software modules based on the results of field tests of elementary samples based on the Ni-Ti system and verification by known analytical solutions of model boundary value problems of SMA mechanics.

Keywords:

shape memory alloys, thermomechanical coupling, hydraulic and fuel systems of aircraft, finite element method, Simulia AbaQus, stress–strain state

References

  1. Khalov M.O. Trudy MAI, 2012, no. 55. URL: https://trudymai.ru/eng/published.php?ID=30132

  2. Kovalevich M.V., Klimova A.A. Trudy MAI, 2010, no. 38. URL: https://trudymai.ru/eng/published.php?ID=14150

  3. Likhachev V.A., Kuz’min S.L., Kamentseva Z.P. Effekt pamyati formy. (Shape memory effect), Leningrad, Izd-vo Leningradskogo universiteta, 1987, 216 p.

  4. Arutyunov A.G., Dydyshko D.V, Endogur A.I., Kuznetsov K.V., Tolmachev V.I. Trudy MAI, 2016, no. 90. URL: https://trudymai.ru/eng/published.php?ID=74704

  5. Smagin D.I., Pugachev Yu.N., Dolgov O.S. Trudy MAI, 2011, no. 44. URL: https://trudymai.ru/eng/published.php?ID=25118

  6. Nizametdinov F.R., Sorokin F.D., Ivannikov V.V. Trudy MAI, 2019, no. 109. URL: https://trudymai.ru/eng/published.php?ID=111337. DOI: 10.34759/trd-2019-109-2

  7. Kapgan M., Melton K. Shape memory alloy tube and pipe couplings, Proceedings of Engineering Aspects of Shape Memory Alloys, London, 1990, pp. 137-148.

  8. Tabesh M., Atli K., Rohmer J., Franco B., Karaman I., Boyd J., Lagoudas D. Design of shape memory alloy pipe couplers: modeling and experiments, Proceedings of SPIE 8343, Industrial and Commercial Applications of Smart Structures Technologies, San Diego, 2012, pp. 18. DOI: 10.1117/12.915361

  9. Lomakin E.V. Constitutive models of mechanical behavior of media with stress state dependent material properties, Advanced Structurtd Materials, 2011, vol. 7, pp. 339-350. DOI: 10.1007/978-3-642-19219-7_17

  10. Yong Liu, Z. Xie, J. Van Humbeeckd, L. Delaey. Asymmetry of stress-strain curves under tension and compression for NiTi shape memory alloys, Acta materialia, 1998, vol. 46, no. 12, pp. 4325–4338. DOI: 10.1016/S1359-6454(98)00112-8

  11. Wu D., Sun G., Wu J. The nonlinear relationship between transformation strain and applied stress for nitinol, Materials Letters, 2003, vol. 57, № 7, pp. 1334-1338. DOI: 10.1016/S0167-577X(02)00983-7

  12. Mashikhin A.B., Movchan A.A. Izvestiya RAN. Mekhanika tverdogo tela, 2016, no. 3, pp. 100-114.

  13. Mashikhin A.E., Movchan A.A. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mekhanika. 2017, no. 3, pp. 113-128.

  14. Sharunov A.V. Mekhanika kompozitsionnykh materialov i konstruktsii, 2020, vol. 26, no. 2, pp. 174-189. DOI: 10.33113/mkmk.ras.2020.26.02.174_189.02

  15. Nushtaev D.V., Zhavoronok S.I. Dynamics of martensite phase transitions in shape memory beams under buckling and postbuckling conditions, IFAC, 2018, vol. 51, no. 2, pp. 873-878.

  16. Nushtaev D.V., Zhavoronok S.I. Abnormal buckling of thin-walled bodies with shape memory effects under thermally induced phase transitions. In: Recent Developments in the Theory of Shells. Advanced Structured Materials, Berlin, Springer, 2019, vol. 110, pp. 227-250. DOI: 10.1007/978-3-030-17747-8_26

  17. Ruiz-Pinilla J., Montoya-Coronado L., Ribas C., Cladera A. Finite element modeling of RC beams externally strengthened with iron-based shape memory alloy (Fe-SMA) strips, including analytical stress-strain curves for Fe-SMA, Engineering Structures, 2020, vol. 223, no. 15. DOI: 10.1016/j.engstruct.2020.111152

  18. Saleeb A., Natsheh S., Owusu-Danquah J. Efficiency of finite element analyses of 55NiTi SMA actuators: Solid versus beam and shell modeling, Finite Elements in Analysis and Design, 2017, vol. 136. pp. 58-69. DOI: 10.1016/j.finel.2017.07.011

  19. Porenta L., Lavrencic M., Dujc J., Brojan M., Tusek J. Modeling large deformations of thin-walled SMA Structures by shell finite elements, Communications in Nonlinear Science and Numerical Simulation, 2021, vol. 101, no. 55. DOI: 10.1016/j.cnsns.2021.105897

  20. Zhou B., Kang Z., Wang Z., Xue S. Finite element method on shape memory alloy structure and its applications, Chinese Journal of Mechanical Engineering, 2019, vol. 32, DOI: 10.1186/s10033-019-0401-3

  21. Ho H., Choi E., Park S. Investigating stress distribution of crimped SMA fibers during pullout behavior using experimental testing and a finite element model, Composite Structures, 2021, vol. 272. DOI: 10.1016/j.compstruct.2021.114254

  22. Xolin P., Collard C., Engels-Deutsch M., Zineb T. Finite element and experimental structural analysis of endodontic rotary file made of Cu-based single crystal SMA considering a micromechanical behavior model, International Journal of Solids Structures, 2021, vol. 221. DOI: 10.1016/j.ijsolstr.2021.01.015

  23. Movchan A.A., Movchan I.A., Sil’chenko L.G. Izvestiya RAN. Mekhanika tverdogo tela, 2010, no. 3, pp. 118–130.
  24. Movchan A.A., Sil’chenko L.G., Sil’chenko T.L. Izvestiya RAN. Mekhanika tverdogo tela, 2011, no. 2, pp. 44–56.

  25. Mishustin I.V., Movchan A.A. Izvestiya RAN. Mekhanika tverdogo tela, 2014, no. 1, pp. 37–53.

  26. Mishustin I.V., Movchan A.A. Izvestiya RAN. Mekhanika tverdogo tela, 2015, no. 2, pp. 78–95.

  27. Movchan A.A. Mekhanika kompozitsionnykh materialov i konstruktsii, 2021, vol. 27, no. 3, pp. 343-359.

  28. Boyd J.G., Lagoudas D.C. A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy, International Journal of Plasticity, 1996, vol. 12, no. 6, pp. 805-842. DOI: 10.1016/S0020-7683(01)00152-4

  29. Arghavani J., Auricchio F., Naghdabadi R., Relai A., Sohrabpour S. A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings, International Journal of Plasticity, 2010, vol. 26, no. 7, pp. 976-991. DOI: 10.1016/j.ijplas.2009.12.003

  30. Saganov E.B., Sharunov A.V. Mekhanika kompozitsionnykh materialov i konstruktsii, 2020, vol. 26, no. 1, pp. 108-121.

  31. Saganov E.B. Mekhanika kompozitsionnykh materialov i konstruktsii, 2021, vol. 27, no. 4, pp. 511-522.

  32. Aerofit, Inc APT Laboratory, 1968-2004. URL: www.aerofit.com

  33. Movchan A.A., Kazarina S.A., Sil’chenko A.L. Deformatsiya i razrushenie materialov, 2018, no. 12, pp. 2-11.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход