Analytical model of determination of orbital object motion parameters by results of its observations from spacecraft on the basis of neural network


Аuthors

Ananenko V. M.

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

e-mail: vka@mil.ru

Abstract

The article presents the results of scientific and methodological approach to the possibility of solving the problem of motion parameters autonomous determining of non-cooperated orbital object in the form of the orbit elements. This requires measuring relative flight parameters of the orbital object flyby in the area of the spacecraft. Measurements are being conducted by the spacecraft onboard optoelectronic equipment. The zenith distances of the orbital object at characteristic points of the spacecraft orbit and the orbital object flyby time between these points are selected as the measured parameters. Such characteristic points of the orbit are the locations of the spacecraft at the moments when the orbital object crosses the plane perpendicular to the plane of the spacecraft and the plane of the spacecraft orbit. The obtained information is being processed employing a multilayer feed forward neural network. The output of the neural network is used to determine directly the motion parameters of the orbital object.

The obtained results can be implemeneted in the design and research of neural networks for autonomous of the orbital object motion parameters determining based on the results of its observation from the spacecraft with optoelectronic devices. The article considered the effect of the neural network size changing in both the number of internal layers and the number of neurons in each layer on the accuracy of solving the problem of motion parameters determining of an orbital object.

Keywords:

spacecraft, orbital object, parameters of motion of the center of mass, onboard measurements, neural network

References

  1. Orbital Debris Quarterly News. NASA, vol. 26, I. 4, December 2022, 14 p.

  2. Pikalov R.S., Yudintsev V.V. Trudy MAI, 2018, no. 100. URL: https://trudymai.ru/eng/published.php?ID=93299

  3. Sokolov N.L., Zakharov P.A. Lesnoi vestnik, 2016, no. 2. C. 214-224.

  4. Anisimov V.D., Batyr' G.S., Men'shikov A.V., Shilin V. Vozdushno-kosmicheskaya oborona, 2004, no. 1. URL: http://militaryarticle.ru/voenno-kosmicheskaya-oborona/2004/12302-skkp-rossii-vchera-segodnja-zavtra-2

  5. Maletin A.N., Glushchenko A.A., Mishina O.A. Trudy MAI, 2022, no, 127. URL: https://trudymai.ru/eng/published.php?ID=170351. DOI: 10.34759/trd-2022-127-21

  6. Fadin I.A., Yanov S.V., Samokhvalov O.A. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2019, vol. 18, no. 3. pp. 155-165. DOI: 10.18287/2541-7533-2019-18-3-155-165

  7. Kovalenko E.L., Fadin I.A. Trudy Voenno-kosmicheskoi akademii imeni A.F. Mozhaiskogo, 2022, no. 682, pp. 70-76.

  8. Avksent'ev A.A. Trudy Voenno-kosmicheskoi akademii imeni A.F. Mozhaiskogo, 2022, no. 682, pp. 21-28.

  9. Treshchalin A.P. Trudy Moskovskogo fiziko-tekhnicheskogo instituta, 2012, vol. 4, no. 3, pp. 122-131.

  10. Bessonov R.V., Belinskaya E.V., Brysin N.N., Voronkov S.V., Kurkina A.N., Forsh A.A. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, vol, 15, no. 6, pp. 9–20.

  11. Shilov L.B. Trudy MAI, 2012, no. 52. URL: https://trudymai.ru/eng/published.php?ID=29457

  12. Cail H. et al. Improved tracklet association for space objects using short-arc optical measurements, Acta Astronautica, 2018, vol. 151, pp. 836–847. DOI: 10.1016/j.actaastro.2018.07.024

  13. Lei X. et al. A geometrical approach to association of space-based very short-arc LEO tracks, Advances in Space Research, 2018, vol. 62, no. 3, pp. 542–553. DOI: 10.1016/j.asr.2018.04.044

  14. Psiaki M.L., Weisman R.M., Jah M.K. Gaussian Mixture Approximation of Angles-Only Initial Orbit Determination Likelihood Function, Journal of Guidance, Control, and Dynamics, 2017, vol. 40, no. 11, pp. 2807–2819. DOI: 10.2514/1.G002615

  15. Samotokhin A.S., Khutorovskii Z.N. Preprinty IPM im. M.V.Keldysha, 2014, no. 44, 31 p. URL: http://library.keldysh.ru/preprint.asp?id=2014-44

  16. Sokolov D.Yu. Trudy MAI, 2022, no. 123. URL: https://trudymai.ru/eng/published.php?ID=165563. DOI: 10.34759/trd-2022-123-17

  17. Ananenko V.M., Golyakov A.D., Sasunkevich A.A. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie, 2022, vol. 65, no. 8, pp. 565-574. DOI: 10.17586/0021-3454-2022-65-8-565-574

  18. Voronov K.E., Grigor'ev D.P., Telegin A.M. Trudy MAI, 2021, no. 118. URL: https://trudymai.ru/eng/published.php?ID=158245. DOI: 10.34759/trd-2021-118-10

  19. Ananenko V.M., Usikov A.A. Materialy III Vserossiiskoi nauchno-prakticheskoi konferentsii «Problemy sozdaniya i primeneniya kosmicheskikh apparatov i sistem sredstv vyvedeniya v interesakh resheniya zadach vooruzhennykh sil rossiiskoi federatsii», Sankt-Peterburg, Voenno-kosmicheskaya akademiya imeni A.F. Mozhaiskogo, 2022, pp. 59-64.

  20. Ananenko V.M. Chetvertaya Mezhdunarodnaya nauchnaya konferentsiya «Aerokosmicheskoe priborostroenie i ekspluatatsionnye tekhnologii», Sankt-Peterburg, Sankt-Peterburgskii gosudarstvennyi universitet aerokosmicheskogo priborostroeniya, 2023, pp. 3-7. DOI: 10.31799/978-5-8088-1820-0-2023-4-2


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход