Mathematical modeling of dynamic conditions of vibration machines


Аuthors

Bolshakov R. S.*, Gozbenko V. E.**, Quang T. V.***

Irkutsk State Transport University (IrGUPS), 15, Chernyshevsky str., Irkutsk, 664074, Russia

*e-mail: Bolshakov_rs@mail.ru
**e-mail: vgozbenko@yandex.ru
***e-mail: trucvq1990@gmail.com

Abstract

The subject of the study is a technical object in the form of a vibration technological machine used in the implementation of technological processes associated with vibration hardening, transportation, sorting, etc. The technical object under consideration contains mass-inertial and elastic elements.

The purpose of the study is to assess the possibilities of changing the dynamic condition of a vibration technological machine by adjusting the parameters of the constituent elements to obtain stable dynamic operating modes of the technological equipment in question.

As a research tool, structural mathematical modeling is used, based on the use of dynamic analogues of the original design diagrams of vibration technological machines in the form of mechanical oscillatory systems with several degrees of freedom, which are structural diagrams of automatic control systems.

The main results obtained during the research include the construction of a mathematical model of a vibration technological machine, which allows one to assess the dynamic comdition of the technical object under study, as well as change parameters to obtain motion modes in which there are no angular vibrations of the working body of the vibration technological machine.

The use of the obtained results is possible when modernizing and designing vibration technological machines by introducing additional elements into their structure, the parameters of which can vary depending on the type of technological process. Based on the proposed method, a control system for the technical object under consideration can be created.

The conducted research allows us to propose a method for assessing the dynamic interactions between the elements of a vibration technological machine.

Keywords:

structural mathematical modeling, Laplace transforms, vibration technological machines, block diagrams, vibration hardening

References

  1. Frolov K.V., Furman F.A. Prikladnaya teoriya vibrozashchitnykh sistem (Applied theory of vibration protection systems), Moscow, Mashinostroenie, 1985, 286 p.

  2. Makhutov N.A. Prochnost' i bezopasnost': fundamental'nye i prikladnye issledovaniya (Strength and safety: fundamental and applied research), Novosibirsk, Novosibirskoe otdelenie izdatel'stva "Nauka", 2008, 528 p.

  3. Panovko G.Ya. Dinamika vibratsionnykh tekhnologicheskikh protsessov: monografiya. (Dynamics of vibration technological processes: monograph), Moscow-Izhevsk, NITs “Regulyarnaya i khaoticheskaya dinamika”, Institut komp'yuternykh issledovanii, 2006, 176 p.

  4. Eliseev S.V., Eliseev A.V. Theory of oscillations. Structural mathematical modeling in problems of dynamics of technical objects, Cham, Springer Nature Switzerland AG, 2019, 521 p.

  5. Tupitsyn A.A., Nechaev V.V., Gozbenko V.E. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie, 2015, no. 3 (47), pp. 83-88.

  6. Buldaev A.S., Khishektueva I.Kh.D., Anakhin V.D., Dambaev Zh.G. Vestnik Buryatskogo gosudarstvennogo universiteta. Matematika, informatika, 2020, no. 4, pp. 14-25. DOI: 10.18101/2304-5728-2020-4-14-25

  7. Buldaev A.S. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matematika. 2014, vol. 8, pp. 29-43.

  8. Mizhidon A.D., Kharakhinov A.V. Vestnik Buryatskogo gosudarstvennogo universiteta. Matematika, informatika, 2019, no. 1, pp. 65-77. DOI: 10.18101/2304-5728-2019-1-65-77

  9. Pushchin R.V., Pykhalov A.A. Trudy MAI, 2020, no. 110. URL: https://trudymai.ru/eng/published.php?ID=112862. DOI: 10.34759/trd-2020-110-11

  10. Pykhalov A.A., Milov A.E. Kontaktnaya zadacha statisticheskogo i dinamicheskogo analiza sborochnykh rotorov turbomashin: monografiya (Contact problem of statistical and dynamic analysis of assembly rotors of turbomachines: monograph), Irkutsk, Irkutskii gosudarstvennyi tekhnicheskii universitet, 2007, 190 p.

  11. Bokhoeva L.A., Baldanov A.B., Rogov V.E. Inzhenernyi zhurnal: nauka i innovatsii, 2022, no. 12 (132). DOI: 10.18698/2308-6033-2022-12-2233

  12. Eliseev S.V., Kuznetsov N.K., Eliseev A.V., Vyong Kuang Ch. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta, 2019, vol. 23, no. 4 (147), pp. 689-698. DOI: 10.21285/1814-3520-2019-4-689-698

  13. Kashuba V.B., Bol'shakov R.S., Mozalevskaya A.K., Nguen D.Kh. Mekhaniki XXI veku, 2016, no. 15, pp. 295-300.

  14. Kargapol'tsev S.K., Eliseev S.V., Vyong K.Ch. Sistemy. Metody. Tekhnologii, 2019, no. 2 (42), pp. 7-12. DOI: 10.18324/2077-5415-2019-2-7-12

  15. Abiduev P.L., Darmaev T.G. VII Mezhdunarodnaya nauchnaya konferentsiya “Problemy mekhaniki sovremennykh mashin”: sbornik trudov. Ulan-Ude, Vostochno-Sibirskii gosudarstvennyi universitet tekhnologii i upravleniya, 2018, vol. 3, pp. 13-17.

  16. Eliseev A.V., Kuznetsov N.K., Mironov A.S. Trudy MAI, 2023, no. 128. URL: https://trudymai.ru/eng/published.php?ID=171386. DOI: 10.34759/trd-2023-128-05

  17. Eliseev A.V., Kuznetsov N.K., Eliseev S.V. Trudy MAI, 2021, no. 118. URL: https://trudymai.ru/eng/published.php?ID=158213. DOI: 10.34759/trd-2021-118-04

  18. Eliseev A.V., Kuznetsov N.K., Eliseev S.V. Trudy MAI, 2021, no. 120. URL: https://trudymai.ru/eng/published.php?ID=161421. DOI: 10.34759/trd-2021-120-08

  19. Eliseev S.V., Bol'shakov R.S., Eliseev A.V. et al. Patent № 2689901 C2 RF, MPK F16F 15/02, F16F 7/10, 29.05.2019.

  20. Eliseev S.V., Bol'shakov R.S., Eliseev A.V. et al. Patent № 2716368 C1 RF, MPK F16F 15/04, 11.03.2020.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход