Simulation of bell states for the software implementation of a quantum simulator


Аuthors

Semenov A. S.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: Semenov_Alex@yahoo.com

Abstract

The aim of this study is to enhance the efficiency and precision of quantum simulators via the simulation of Bell states utilizing diverse quantum gates, initialization, and measurement algorithms. Such research will enable us to gain a more profound comprehension of quantum solutions for intricate issues while enhancing their performance.

Bell states are a set of four entangled quantum states represented by two qubits. Each qubit can be in a superposition of two states, namely 0 and 1. These states are used as building blocks for many quantum algorithms and quantum protocols, such as teleportation and dense coding. Bell states are also used to experimentally demonstrate quantum entanglement and quantum teleportation.

Theoretical modeling of Bell states requires understanding the quantum state correlations between two qubits in an entangled state. Let us highlight three approaches to simulating Bell states: algorithms based on various quantum gates, algorithms based on density matrices that describe the statistical properties of quantum systems, and algorithms based on entanglement measures that quantify the degree of entanglement between two qubits.

Understanding the effects of noise and imperfections in quantum hardware for entangled state generation in Bell state simulations requires the development of error correction and fault tolerance methods for quantum information processing. Research into multiqubit entangled states demonstrates complex quantum phenomena such as quantum teleportation networks and quantum error correction codes.

The following algorithms simulating Bell states are considered: an algorithm based on the Hadamard and CNOT gates, an algorithm using a single-qubit Pauli-X gate, an algorithm using a single-qubit S-gate, an algorithm using a T-gate, an algorithm using an X-gate,

The initial state generation algorithm prepares qubits for quantum operations and measurements. The correct choice of the initial state can influence the results of calculations and the efficiency of the algorithm. In addition, the measurement results depend on the states of the qubits after performing quantum operations. Let's take a closer look at these algorithms.

The algorithm for generating multiple random initial states of a two-qubit system is useful for testing the behavior and stability of quantum algorithms and simulators. The Kronecker product of qubit states allows the algorithm to represent the entire state of two qubits as a 4-dimensional vector, which is used to model the evolution of a quantum system over time.

When measuring the states of a two-qubit quantum system in the Bell basis, the measurement probabilities give an idea of the chances of different measurement results. These probabilities are calculated based on algorithm n-qubit measurements. By measuring the system several times and comparing the measured results with the probabilities, the quantum mechanical predictions and the accuracy of the quantum device are checked.

The proposed algorithms improve the simulation and manipulation of Bell states, making them suitable for a wide range of applications, particularly the enhancement of software implementations of quantum simulators. This study was focused on improving software quantum simulators, providing an advancement in the field. The significance of Bell states for quantum information and computing is emphasized in the paper, along with the necessity of accurate and efficient simulation and manipulation of these states.

Keywords:

quantum computing, quantum simulator, qubit, gate, quantum circuit, quantum algorithm, Bell states, state measurement

References

  1. Kuznetsova S.V., Semenov A.S. Trudy MAI, 2023, no. 131. DOI: 10.34759/trd-2023-131-24

  2. Viamontes G.F., Markov I.L., Hayes J.P. Quantum Circuit Simulator, Springer Science + Business Media B.V., 2009, 200 p.

  3. Hensgens T., Fujita T., Janssen L. et al. Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array, Nature 548, 2017, pp. 70–73. DOI: 10.1038/nature23022

  4. Kandala A., Mezzacapo A., Temme K. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets, Nature 549, 2017, pp. 242–246. DOI: 10.1038/nature23879

  5. Lanyon B., WhitfieldJ., Gillett G. et al. Towards quantum chemistry on a quantum computer, Nature Chem 2, 2010, pp. 106–111. DOI: 10.1038/nchem.483

  6. Zhang S., Krakauer H. Quantum Monte Carlo method using phase-free random walks with Slater determinants, Physical review letters, 2003, vol. 90 (13), pp. 136401. DOI: 10.1103/PhysRevLett.90.136401

  7. Semenov M.E., Solov'ev A.M., Popov M.A. Trudy MAI, 2017, no. 93. URL: http://trudymai.ru/eng/published.php?ID=80231

  8. Popov I.P. Trudy MAI, 2022, no. 126. URL: https://trudymai.ru/eng/published.php?ID=168987. DOI: 10.34759/trd-2022-126-01

  9. Kholostova O.V., Safonov A.I. Trudy MAI, 2018, no. 100. URL: https://trudymai.ru/eng/published.php?ID=93297

  10. Nielsen M.A., Chuang I.L. Quantum computation and quantum information, 2010, Cambridge University Press, 123 p.

  11. Barenco A., Bennett C.H., Cleve R., DiVincenzo D.P. et alElementary gates for quantum computation // Physical review A, 1995, vol. 52 (5), pp. 3457. DOI: 10.1103/PhysRevA.52.3457

  12. Nakahara M., Ohmi T. Quantum computing: from linear algebra to physical realizations, 2008, CRC press, 438 p. DOI: 10.1201/9781420012293

  13. Shor P.W. Algorithms for quantum computation: discrete logarithms and factoring, In Proceedings 35th Annual Symposium on Foundations of Computer Science, IEEE, 1994, pp. 124-134. DOI: 10.1109/SFCS.1994.365700

  14. Aspect A., Grangier P., Roger, G. Experimental tests of realistic local theories via Bell's theorem, Physical Review Letters, 1981, vol. 47 (7), pp. 460-463. DOI: 10.1103/PhysRevLett.47.460

  15. Bell J.S. On the Einstein-Podolsky-Rosen paradox, Physics Physique Fizika, 1964, vol. 1 (3), pp. 195-200. DOI: 10.1103/PhysicsPhysiqueFizika.1.195

  16. Bouwmeester D. et al. Experimental quantum teleportation, Nature, 1997, vol. 390 (6660), pp. 575-579. DOI: 10.1038/37539

  17. Bennett C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Physical Review Letters, 1993, vol. 70 (13), pp. 1895-1899. DOI: 10.1103/PhysRevLett.70.1895

  18. Braunstein S.L., Kimble H.J. Teleportation of continuous quantum variables, Physical Review Letters, 1998, vol. 80 (4), pp. l869-872. DOI: 10.1103/PhysRevLett.80.869

  19. Bennett C.H., Wiesner S.J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, Physical Review Letters, 1992, vol. 69 (20), pp. 2881-2884. DOI: 10.1103/PhysRevLett.80.869

  20. Kwiat P.G. et al. New high-intensity source of polarization-entangled photon pairs, Physical Review Letters, 1995, vol. 75 (24), pp. 4337-4341. DOI: 10.1103/PhysRevLett.75.4337

  21. Bouwmeester D. et al. Observation of three-photon Greenberger-Horne-Zeilinger entanglement, Physical Review Letters, 1999, vol. 82 (7), pp. 1345-1349. DOI: 10.1103/PhysRevLett.82.1345

  22. Bennett C.H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels, Physical Review Letters, 1996, vol. 76 (5), pp. 722-725. DOI: 10.1103/PhysRevLett.76.722

  23. Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information, 2000, Cambridge University Press, 702 p.

  24. Alicki R., Lendi K. Quantum dynamical semigroups and applications, 2007, vol. 717, Springer, Berlin, 129 p.

  25. Breuer H.P., Petruccione F. The Theory of Open Quantum Systems, 2002, Oxford University Press, DOI: 10.1093/acprof:oso/9780199213900.001.0001

  26. Plenio M.B., Virmani S. An introduction to entanglement measures, Quantum Information and Computation, 2005, vol. 7 (1), pp. 1-51. DOI: 10.26421/QIC7.1-2-1

  27. Vidal G., Werner R.F. Computable measure of entanglement, Physical Review A, 2002, vol. 65 (3), pp. 032314. DOI: 10.1103/PhysRevA.65.032314

  28. Modi K. et al. The classical-quantum boundary for correlations: Discord and related measures, Reviews of Modern Physics, 2012, vol. 84 (4), pp. 1655-1707. DOI: 10.1103/RevModPhys.84.1655

  29. Aharonov D., Ben-Or M. Fault-tolerant quantum computation with constant error, SIAM Journal on Computing, 2008, vol. 38 (4), pp. 1207-1282. DOI: 10.1137/S009753979935938

  30. Knill E. et al. Resilient quantum computation, Physics, 1998, vol. 279 (5349), pp. 342-345. DOI: 10.1126/SCIENCE.279.5349.342

  31. Fowler A.G. et al. Surface codes: Towards practical large-scale quantum computation, Physical Review A, 2012, vol. 86 (3), pp. 032324. DOI: 10.1103/PhysRevA.86.032324

  32. Cong S. Control of quantum systems: theory and methods, John Wiley & Sons, 2014, 400 p.

  33. Raussendorf R., Briegel H.J. A one-way quantum computer, Physical Review Letters, 2001, vol. 86 (22), pp. 5188-5191. DOI: 10.1103/PhysRevLett.86.5188

  34. Calderbank A.R., Shor P.W. Good quantum error-correcting codes exist, Physical Review A, 1996, vol. 54 (2), pp. 1098-1105. DOI: 10.1103/PhysRevA.54.1098


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход