Parametric synthesis of a nonlinear automatic control system with distributed parameters


Аuthors

Goncharova V. I.

Saint Petersburg State University of Aerospace Instrumentation, 67, Bolshaya Morskaya str., Saint Petersburg, 190000, Russia

e-mail: goncharova_31kaf@bk.ru

Abstract

The development of an automatic control system for any fairly complex technical object is a long, multifaceted process; one of the main stages is the construction of an adequate mathematical model of the control object. The choice of a mathematical model of an object is in one way or another connected with the idealization of its mathematical description, which involves highlighting the main patterns in the behavior of the object and neglecting secondary connections and effects, taking into account the expected conditions of its physics of functioning in a real system. In this work, we will consider an example related to temperature control in a furnace. Since in such a system it is necessary to take into account several variables, when constructing a mathematical model, the automatic control system is distributed. If, in a system for regulating the heating of a rod in a furnace, we implement the transition from partial differential equations inherent in systems with distributed parameters to ordinary differential equations, then it is most advisable to consider the system as a linear system with a retarded argument.

It should be noted that such a procedure is very useful, since algorithms for efficiently solving ordinary differential equations are much better developed compared to algorithms for directly solving partial differential equations.

The paper presents a possible implementation of the transition from partial differential equations to ordinary differential equations for solving the problem of parametric synthesis using the generalized Galerkin method for automatic control systems with distributed parameters. As a mathematical apparatus, the method of separation of variables (Fourier) is used, as well as obtaining state space matrices in order to obtain the transfer function of an automatic control system with distributed parameters.

Keywords:

automatic control system (ACS), ACS with distributed parameters, method of separation of variables (Fourier), partial differential equations, generalized Galerkin method

References

  1. Nikitin A.V., Shishlakov V.F. Parametricheskii sintez nelineinykh sistem avtomaticheskogo upravleniya (Parametric synthesis of nonlinear automatic control systems), Saint Petersburg, GUAP, 2003, 358 p.

  2. Shishlakov V.F., Shishlakov A.V., Timofeev S.S. Sintez SAU pri razlichnykh vidakh approksimatsii nelineinykh kharakteristik: teoriya i praktika (Synthesis of automatic control systems for various types of approximation of nonlinear characteristics: theory and practice), Saint Petersburg, GUAP, 2017, 151 p.

  3. Shankar Sarty. Nonlinear Systems: Analysis, Stability, and Control, USA, Springer-Verlag, New York, 1999, 675 p.

  4. Haskara I., Ozguner U., Winkelman J. Extremum control for optimal operating point determination and set point optimization via sliding modes, Journal Dynamic System, Measurement and Control, 2000, vol. 122, pp. 719-724. DOI: 10.1115/1.1317231

  5. Vladislav Shishlakov, Elizaveta Vataeva, Natalia Reshetnikova, Dmitriy Shishlakov. Synthesis of control laws of electromechanical systems under polynomial approximation of characteristics of nonlinear elements, MATEC Web of Conferences, 2018, vol. 161 (2), pp. 02006. DOI: 10.1051/matecconf/201816102006

  6. Goncharova V.I. I Mezhdunarodnyi forum “Matematicheskie metody i modeli v vysokotekhnologichnom proizvodstve”: tezisy dokladov. Saint Petersburg, Sankt-Peterburgskii gosudarstvennyi universitet aerokosmicheskogo priborostroeniya, 2021, pp. 56-57.

  7. Goncharova V.I. IV Mezhdunarodnyi forum “Metrologicheskoe obespechenie innovatsionnykh tekhnologii”: sbornik statei. Saint Petersburg, Sankt-Peterburgskii gosudarstvennyi universitet aerokosmicheskogo priborostroeniya, 2022, pp. 48-49.

  8. Shishlakov V.F., Goncharova V.I. XVII Mezhdunarodnaya konferentsiya po elektromekhanike i robototekhnike. “Zavalishinskie chteniya 22”: sbornik dokladov. Saint Petersburg, Sankt-Peterburgskii gosudarstvennyi universitet aerokosmicheskogo priborostroeniya, 2022, pp. 103-109. DOI: 10.31799/978-5-8088-1705-0-2022-17-103-109

  9. Goncharova V.I. Svidetel'stvo o gosudarstvennoi registratsii programmy dlya EVM № 2022663274 RF, 13.07.2022.

  10. Goncharova V.I. Svidetel'stvo o gosudarstvennoi registratsii programmy dlya EVM № 2022663275 RF, 13.07.2022.

  11. Goncharova V.I. Svidetel'stvo o gosudarstvennoi registratsii programmy dlya EVM № 2022663276 RF, 13.07.2022.

  12. Goncharova V.I. Svidetel'stvo o gosudarstvennoi registratsii programmy dlya EVM № 2022619027 RF, 26.05.2022.

  13. Ibragimov D.N. Trudy MAI, 2016, no. 87. URL: https://trudymai.ru/eng/published.php?ID=69797

  14. Uryupin I.V. Trudy MAI, 2018, no. 100. URL: https://trudymai.ru/eng/published.php?ID=93292

  15. Vatutin M.A., Klyuchnikov A.I. Trudy MAI, 2022, no. 127. URL: https://trudymai.ru/eng/published.php?ID=170355. DOI: 10.34759/trd-2022-127-22

  16. Ezrokhi Yu.A., Kalenskii S.M. Trudy MAI, 2022, no. 123. URL: https://trudymai.ru/eng/published.php?ID=165500. DOI: 10.34759/trd-2022-123-23

  17. Vel'misov P.A., Pokladova Yu.V., Mizkher U.D. Avtomatizatsiya protsessov upravleniya, 2019, no. 3 (57), pp. 93-101. DOI: 10.35752/1991-2927-2019-3-57-93-101

  18. Vel'misov P.A., Ankilov A.V., Pokladova Y.V. On The Stability of Solutions of Certain Classes of Initial-Boundary-Value Problems in Aerohydroelasticity, Journal of Mathematical Sciences, 2021, vol. 259, no. 3, pp. 296-308. DOI: 10.1007/s10958-021-05618-6

  19. Aida-Zade K.R., Abdullaev V.M. Avtomatika i telemekhanika, 2022, no. 1, pp. 130-149.

  20. Goncharova V.I. Svidetel'stvo o gosudarstvennoi registratsii programmy dlya EVM № 2023666043 RF, 25.07.2023.

  21. 21.Ankilov A.V., Vel'misov P.A. Vestnik Dagestanskogo gosudarstvennogo universiteta. Seriya 1: Estestvennye nauki, 2020, vol. 35, no. 3, pp. 45-52. DOI: 10.21779/2542-0321-2020-35-3-45-52

  22. Abdelbaki A.R., Paidoussis M.P., Misra A.K. A nonlinear model for a hanging cantilevered pipe discharging fluid with a partially-confined external flow, International Journal of Non-Linear Mechanics, 2020, vol. 118. DOI: 10.1016/j.ijnonlinmec.2019.103290

  23. Velmisov P.A., Ankilov A.V. Mathematical modeling in problems about dynamics and stability of elastic elements of wing profiles, Cybernetics and Physics, 2021, vol. 10, no. 3, pp. 201-212. DOI: 10.35470/2226-4116-2021-10-3-201-212

  24. Ivanov D.V., Sandler I.L., Diligenskaya A.N. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki, 2022, vol. 30, no. 3 (75), pp. 45-57. DOI: 10.14498/tech.2022.3.4


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход