Testing the method of automated placement of elements on a rigid-flexible printed board using practical examples


Аuthors

Makeev P. A.*, Chermoshentsev S. F.**

Kazan National Research Technical University named after A.N. Tupolev, 10, Karl Marks str., Kazan, 420111, Russia

*e-mail: pragramer@yandex.ru
**e-mail: sapr@kai.ru

Abstract

The use of rigid-flex printed circuit boards on aircraft is due to the necessity of reducing overall dimensions and its weight. However, the use of rigid-flex printed circuit boards leads to problems of with thermal and electromagnetic compatibility due to the high density of elements on the board.

This article proposes the use of a technique for automated placement of elements on a rigid-flex printed circuit board of an electronic device, taking into account thermal and electromagnetic compatibility based on a two-level genetic algorithm.

The technique includes two levels of placing elements on the printed circuit board. At each level of the methodology, when solving the problem of automated elements placement, a modified genetic algorithm is used. The first level of the technique consists of super elements placement (an active element-microcircuit and associated passive elements) on a rigid-flex printed circuit board, taking into account the criteria of thermal compatibility and a minimum of total weighted length. The second level of the technique ensures the elements placement on the printed circuit board within a super element, taking into account the criteria of electromagnetic compatibility and the minimum of total weighted length. Verification of the obtained solutions is achieved through the use of computer modeling tools at each level of the proposed methodology. This ensures thermal and electromagnetic compatibility on the rigid-flex printed circuit board.

Validation of the developed methodology on a real practical example confirms its effectiveness and the quality of the results of elements placement on a rigid-flex printed circuit board. A summary of practical examples demonstrates the possibility of using the developed methodology for the printed circuit boards design, as a special case of rigid-flexible printed circuit boards.

Keywords:

automated placement, genetic algorithm, rigid-flex printed circuit board, thermal compatibility, electromagnetic compatibility

References

  1. Trokhov D.A., Turkin I.K. Trudy MAI, 2014, no. 78. URL: https://trudymai.ru/eng/published.php?ID=53735

  2. Biletskaya V.V., Zherebin A.M., Toporova M.I., Shirokov A.I. Oboronnyi kompleks - nauchno-tekhnicheskomu progressu Rossii, 2023, no. 1 (157), pp. 28-34. DOI: 10.52190/1729-6552_2023_1_28

  3. Pavlov M.S., Karavatskii A.K., Kostyushin K.V. et al. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 73, pp. 71-80. DOI: 10.17223/19988621/73/7

  4. Kirillov V.Yu., Slipachenko A.A. Trudy MAI, 2012, no. 59. URL: https://trudymai.ru/eng/published.php?ID=34842

  5. Uaitt K., Rentyuk V. Komponenty i tekhnologii, 2019, no. 6 (215), pp. 121-128.

  6. Romashchenko M.A. Radiotekhnika, 2014, no. 3, pp. 92-95.

  7. Glotov V.V., Romashchenko M.A. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2018, vol. 14, no. 4, pp. 103-107.

  8. Tuishchev A.I., Gubanov I.O., Plekhanov V.M., Tokarev D.G. Vestnik NGIEI, 2014, no. 12 (43), pp. 88-93.

  9. Selivanov K.V., Dolotov I.I., Domnikov A.S. Tekhnologii inzhenernykh i informatsionnykh system, 2023, no. 1, pp. 3-11.

  10. Tsipina N.V., Khoroshailov R.N., Turetskii I.A. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2022, vol. 18, no. 6, pp. 78-86. DOI: 10.36622/VSTU.2022.18.6.010

  11. Feisal R.G., Khadi O.Sh., Litvinov A.N., Bannov V.Ya. Analiz teplovykh polei pechatnykh uzlov, Theoretical & Applied Science, 2016, no. 2 (34), pp. 58-65. DOI: 10.15863/TAS.2016.02.34.10

  12. Suanov T.A. Izvestiya YuFU. Tekhnicheskie nauki, 2013, no. 11 (148), pp. 186-194.

  13. Surovtsev R.S., Gazizov T.R. Trudy MAI, 2015, no. 83. URL: https://trudymai.ru/eng/published.php?ID=62204

  14. Novikov I.S. Avtomatizatsiya razmeshcheniya teplovydelyayushchikh elementov v elektronnykh modulyakh trekhmernoi komponovki na osnove geneticheskogo algoritma (Automation of the placement of fuel elements in electronic modules of a three-dimensional layout based on a genetic algorithm), Doctor's thesis, Moscow, 2009, 132 p.

  15. Kvint I.E. Razrabotka algoritmov razmeshcheniya elektroradioelementov na modulyakh s konduktivnym teplootvodom (Development of algorithms for the placement of electrical radioelements on modules with conductive heat sink), Doctor's thesis, Moscow, 2011, 119 p.

  16. Zudin S.V. Analiz i razrabotka metodov avtomatizirovannogo razmeshcheniya komponentov elektronnykh skhem (Analysis and development of methods for automated placement of components of electronic circuits), Doctor's thesis, Saint-Petersburg, 2004, 135 p.

  17. Bragin D.M. Razrabotka spetsial'nogo matematicheskogo i programmnogo obespecheniya evolyutsionnogo razmeshcheniya elektroradioelementov s uchetom teplovykh polei (Development of special mathematical and software for the evolutionary placement of electrical radio elements taking into account thermal fields), Doctor's thesis, Voronezh, 2007, 195 p.

  18. Irbenek V.S. Vremennaya verifikatsiya i optimizatsiya razmeshcheniya komponentov predel'nykh po bystrodeistviyu EVM: (Temporary verification and optimization of the placement of components of the maximum speed of a computer), Doctor's thesis, Moscow, 2001, 193 p.

  19. Kokotov V.Z. SAPR rel'efnogo montazha (CAD for relief installation), Doctor's thesis, Moscow, 1998, 324 p.

  20. Makeev P.A. Izvestiya SPbGETU LETI, 2021, no. 5, pp. 28-36.

  21. Makeev P.A. Izvestiya SPbGETU LETI, 2022, vol. 15, no. 3, pp. 32-41. DOI: 10.32603/2071-8985-2022-15-3-32-41


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход