Energy characteristics in the evaluation of elastic and lever ties in the dyad of a mechanical oscillatory system
Аuthors
1*, 1**, 2***1. Irkutsk National Research Technical University, 83, Lermontov str., Irkutsk, 664074, Russia
2. Irkutsk State Transport University (IrGUPS), 15, Chernyshevsky str., Irkutsk, 664074, Russia
*e-mail: eavsh@ya.ru
**e-mail: knik@istu.edu
***e-mail: art.s.mironov@mail.ru
Abstract
Vibrational effects are, on the one hand, of great significance in realizing the processes of the parts hardening, the granular mixtures unmixing, ores transportation, granule materials dosing executed by technological units in various industrial brunches. On the other hand, they should be accounted for while creating vibration protection systems of transport and technological machines of various purposes including vibration machines and equipment.
The purpose of the developed scientific and methodological approach is the formation of dynamic states of dyads and the assessment of their dynamic properties under conditions of vibration loads based on generalized energy ratios that take into account lever and elastic bonds.
The methods of theoretical mechanics, theory of differential equations, integral transformations, system analysis and structural mathematical modeling based on comparison of mechanical oscillatory systems used as calculation schemes of technical objects, structural schemes equivalent in dynamic terms to automatic control systems are used.
A scientific and methodological basis has been developed for evaluating, forming and correcting the dynamic states of the dyad, considered as a reference element, using energy characteristics that account for the lever relationships and elastic connections between partial systems and external disturbances.
It is shown that a number of dynamic features of the dyad significantly depend on the frequency of the external disturbance and the characteristics of the device for converting motion. The properties of the dyad are established, reflecting the dependence of partial and natural frequencies, for the analysis of which frequency energy functions are introduced, reflecting the features of accounting for potential and kinetic energies in the system depending on interpartial connections.
Keywords:
mechanical oscillatory system, lever coupling, structural mathematical model, transfer function, connectivity of external disturbances, frequency energy function, damping functionReferences
-
Clarence W. de Silva. Vibration. Fundamentals and Practice, Boca Raton, London, New York, Washington, D.C.: CRC Press, 2000, 957 p.
-
Den-Gartog D.P. Mekhanicheskie kolebaniya (Mechanical vibrations), Moscow, Fizmatgiz, 1960, 574 p.
-
Tsze F.S., Morze I.E., Khinkl R.T. Mekhanicheskie kolebaniya (Mechanical vibrations), Moscow, Mashinostroenie, 1966, 508 p.
-
Rocard Y. General Dynamics of Vibrations, Paris, Masson, 1949, 458 p.
-
Zommerfel'd A. Mekhanika (Mechanics), Moscow-Izhevsk, NITs Regulyarnaya i khaoticheskaya dinamika, 2001, 368 p.
-
Panovko G.Ya. Dinamika vibratsionnykh tekhnologicheskikh protsessov (Dynamics of vibration technological processes), Moscow-Izhevsk, Regulyarnaya i khaoticheskaya dinamika, Institut komp'yuternykh tekhnologii, 2006, 176 p.
-
Kopylov Yu.R. Dinamika protsessov vibroudarnogo uprochneniya (Dynamics of vibration shock hardening processes), Voronezh, Nauchnaya kniga, 2011, 568 p.
-
Krot Pavlo, Hamid Shiri, Przemysław Dąbek, Radosław Zimroz. Diagnostics of Bolted Joints in Vibrating Screens Based on a Multi-Body Dynamical Model, Materials, 2023, vol. 16, no. 17, pp. 5794. DOI: 10.3390/ma16175794
-
Dumitriu Madalina, Apostol Ioana. Influence of Interference between Vertical and Roll Vibrations on the Dynamic Behaviour of the Railway Bogie, Vibration, 2022, vol. 5, pp. 659-675. DOI: 10.3390/vibration5040039
-
Chu, Song Yang. Study on Dynamic Interaction of Railway Pantograph–Catenary Including Reattachment Momentum Impact, Vibration, 2020, vol. 3, pp. 18-33. DOI: 10.3390/vibration3010003
-
Antipov V.A. Podavlenie vibratsii agregatov i uzlov transportnykh sistem (Vibration suppression of aggregates and nodes of transport systems), Moscow, Marshrut, 2006, 264 p.
-
Rieß Sebastian, Kaal William, Herath, Kristian. Frequency-Adaptable Tuned Mass Damper Using Metal Cushions, Vibration, 2021, vol. 4, pp. 77-90. DOI: 10.3390/vibration4010007
-
Maksimov S.A., Naumchenko V.P., Ilyushin P.A., Pikunov D.G., Solov'ev A.V. Trudy MAI, 2023, no. 129. URL: https://trudymai.ru/eng/published.php?ID=173032. DOI: 10.34759/trd-2023-129-20
-
Vellingiri Vishwa, Sadasivam Udhayakumar. Effect of Vibrator Parameters and Physical Characteristics of Parts on Conveying Velocity, Strojniški vestnik - Journal of Mechanical Engineering, 2023, vol. 69, pp. 352-363. DOI: 10.5545/sv-jme.2022.510
-
Kletschkowski T. Theoretical and Non-Dimensional Investigations into Vibration Control Using Viscoelastic and Endochronic Elements, Vibration, 2023, vol. 6 (4), pp. 1030-1047. DOI: 10.5545/sv-jme.2022.510
-
Tophøj Laust, Grathwol Nikolaj, Hansen Svend. Effective Mass of Tuned Mass Dampers, Vibration, 2018, vol. 1, pp. 192-206. DOI: 10.3390/vibration1010014
-
Sysoev O.E., Dobryshkin A.Yu., Nein S.N. Trudy MAI, 2018, no. 98. URL: https://trudymai.ru/eng/published.php?ID=90079
-
Korendiy V., Kachur O., Predko R., Kotsiumbas O., Stotsko R., Ostashuk M. Generating rectilinear, elliptical, and circular oscillations of a single-mass vibratory system equipped with an enhanced twin crank-type exciter, Vibroengineering Procedia, 2023, vol. 51, pp. 8-14. DOI: 10.21595/vp.2023.23657
-
Moueddeb Maryam, Louf François, Boucard Pierre-Alain, Dadié Franck, Saussine Gilles, Sorrentino Danilo. An Efficient Numerical Model to Predict the Mechanical Response of a Railway Track in the Low-Frequency Range, Vibration, 2022, vol. 5, pp. 326-343. DOI: 10.3390/vibration5020019
-
Sehner Michael, Nava Luis, Seidl-Nigsch Markus, Loy Harald. Vibration Mitigation: Under-Ballast Mats in Heavy-Haul Applications, Practice Periodical on Structural Design and Construction, 2023, vol. 28, pp. 05023004. DOI: 10.1061/PPSCFX.SCENG-1258
-
Zhao Zhenhang, Gao Ying, Li Chenghui. Research on the Vibration Characteristics of a Track’s Structure Considering the Viscoelastic Properties of Recycled Composite Sleepers, Applied Sciences, 2020, vol. 11, pp. 150. DOI: 10.3390/app11010150
-
Zou Yu, Wen Yongpeng, Sun Qian. Study on the Urban Rail Transit Sleeper Spacing Considering Vehicle System, MATEC Web of Conferences, 2019, vol. 296, pp. 01008. DOI: 10.1051/matecconf/201929601008
-
Korendiy Vitaliy, Volodymyr Gursky, Oleksandr Kachur, Petro Dmyterko, Oleh Kotsiumbas, Oleksandr Havrylchenko. Mathematical Model and Motion Analysis of a Wheeled Vibro-Impact Locomotion System, Vibroengineering PROCEDIA, 2022, vol. 41, pp. 77–83. DOI: 10.21595/vp.2022.22422
-
Banakh L.Ya. Metody dekompozitsii pri issledovanii kolebanii mekhanicheskikh sistem (Decomposition methods in the study of vibrations of mechanical systems), Moscow-Izhevsk, Regulyarnaya i khaoticheskaya dinamika, 2016, 292 p.
-
Banakh L., Kempner M. Vibrations of Mechanical Systems with Regular Structure, Berlin, Heidelberg, Springer, 2010, 262 p.
-
Gal'perin I.I. Avtomatika kak odnostoronnyaya mekhanika (Automation as one-sided mechanics), Moscow, Energiya, 1964, 264 p.
-
Frolov K.V., Furman F.A. Prikladnaya teoriya vibrozashchitnykh sistem (Applied theory of vibration protection systems), Moscow, Mashinostroenie, 1985, 286 p.
-
Tarasik V.P. Matematicheskoe modelirovanie tekhnicheskikh sistem (Mathematical modeling of technical systems), Minsk, Dizain PRO, 2004, 640 p.
-
Ganiev R.F., Kononenko V.O. Kolebaniya tverdykh tel (Vibrations of solids), Moscow, Nauka, 1976, 432 p.
-
Kolovskii M.Z. Avtomaticheskoe upravlenie vibrozashchitnymi sistemami (Automatic control of vibration protection systems), Moscow, Nauka, 1976, 320 p.
-
Druzhinskii I.A. Mekhanicheskie tsepi (Mechanical chains), Leningrad, Mashinostroenie, 1977, 240 p.
-
Relei D.V. Teoriya zvuka. T. 1 (Theory of sound. Vol. 1), Moscow-Leningrad, Gostekhteoretizdat, 1940, 500 p.
-
Lenk A. Elektromekhanicheskie sistemy. Sistemy s sosredotochennymi parametrami (Electromechanical systems. Systems with concentrated parameters), Moscow, Mir, 1978, 288 p.
-
Eliseev S.V. Prikladnoi sistemnyi analiz i strukturnoe matematicheskoe modelirovanie (dinamika transportnykh i tekhnologicheskikh mashin: svyaznost' dvizhenii, vibratsionnye vzaimodeistviya, rychazhnye svyazi) (Applied system analysis and structural mathematical modeling (dynamics of transport and technological machines: connectivity of movements, vibrational interactions, lever connections)) Irkutsk, IrGUPS, 2018, 692 p.
-
Belokobyl'skii S.V., Eliseev S.V., Kashuba V.B. Prikladnye zadachi strukturnoi teorii vibrozashchitnykh sistem (Applied pr oblems of the structural theory of vibration protection systems), Saint Petersburg, Polytechnic, 2013, 363 p.
-
Eliseev S.V., Eliseev A.V. Theory of Oscillations. Structural Mathematical Modeling in Problems of Dynamics of Technical Objects. Series: Studies in Systems, Decision and Control, vol. 252, Springer International Publishing, Cham, 2020, 521 p.
-
Eliseev A.V. Structural Mathematical Modeling Applications in Technological Machines and Transportation Vehicles. Hershey, PA: IGI Global, 2023. DOI: 10.4018/978-1-6684-7237-8
-
Karnovsky I.A., Lebed E. Theory of Vibration Protection, Springer International Publishing, Switzerland, 2016, 708 p.
-
Eliseev A.V., Eliseev S.V. Sistemy. Metody. Tekhnologii, 2017, № 4 (36), pp. 25-38. DOI: 10.18324/2077-5415-2017-4-25-38
-
Eliseev A.V. Chastotnaya funktsiya i funktsiya dempfirovaniya v otsenke dinamicheskikh protsessov v mekhanicheskikh kolebatel'nykh sistemakh s simmetriei, Advanced Engineering Research (Rostov-on-Don), 2020, vol. 20, no. 4, pp. 360-369.
-
Eliseev A.V. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta, 2017, vol. 21, no. 5 (124), pp. 32-53. DOI: 10.21285/1814-3520-2017-5-32-53
-
Eliseev S.V. Orlenko A.I., Nguen D.Kh. Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta, 2017, vol. 17, no. 3 (90), pp. 46-59.
-
Eliseev A.V., Mironov A.S. XVIII Mezhdunarodnaya nauchno-prakticheskaya konferentsiya «Kulaginskie chteniya: tekhnika i tekhnologii proizvodstvennykh protsessov»: sbornik statei. Chita, Zabaikal'skii gosudarstvennyi universitet, 2018, pp. 220-225.
-
Lur'e A.I. Operatsionnoe ischislenie i primenenie v tekhnicheskikh prilozheniyakh. (Operational calculus and application in technical applications), Moscow, Nauka, 1959, 368 p.
-
Eliseev S.V., Orlenko A.I., Eliseev A.V. Transport Urala, 2017, no. 3 (54), pp. 56-63. DOI: 10.20291/1815-9400-2017-3-56-63
-
Eliseev A.V., Eliseev S.V. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie, 2019, vol. 62, no. 2, pp. 23–33. DOI: 10.26731/1813-9108.2019.2(62).23–33
-
Eliseev A.V., Nikolaev A.V., Mironov S.V. Sed'maya mezhdunarodnaya nauchnaya konferentsiya «Problemy mekhaniki sovremennykh mashin»: sbornik trudov. Ulan-Ude, Izd-vo Vostochno-Sibirskii gosudarstvennyi universitet tekhnologii i upravleniya, 2018, vol. 1, pp. 33-40.
-
Nikolaev A.V., Eliseev A.V. Avtomatizirovannoe proektirovanie v mashinostroenii, 2018, no. 6, pp. 63-65.
-
Eliseev A.V., Kuznetsov N.K., Nikolaev A.V. Materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii «Mashinostroenie: innovatsionnye aspekty razvitiya»:sbornik trudov. Saint Petersburg, Sankt-Peterburgskii filial Nauchno-issledovatel'skogo tsentra «MashinoStroenie», 2019, vol. 2, pp. 50-57. DOI: 10.26160/2618-6810-2019-2-50-57
-
Eliseev A.V., Vyong K.Ch. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie. 2016, no. 1 (49), pp. 33-41.
- Eliseev A.V., Mamaev L.A., Sitov I.S. Sistemy. Metody. Tekhnologii. 2015, no. 4 (28), pp. 15-24.
Download