Study of bending of triangular cross-section carbon fiber beams


Аuthors

Glazjuk Y. V.1, Demidov A. S.2*, Kashelkin V. V.1**

1. Dollezhal Research and Design Institute of Power Engineering, Moscow, Russia, Malaya Krasnoselskaya ul. 2/8, 107140
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: demidov@mai.ru
**e-mail: re.entry@g23.relcom.ru

Abstract

The spaceships, which are expected to fly over the next decades, include large structural assemblies. The largest of them is a refrigerator-radiator, which length may exceed one hundred meters. Its load-bearing base should be a frame made of beams of various cross-sections: round, box-shaped and triangular. At present, carbon-based structural materials are considered the most suitable for the beams manufacturing. They demonstrate high mechanical, acceptable technological properties and they are of low density as well. The carbon-based materials specificity is that they exhibit various properties under tension and compression. Such materials are commonly referred to as multi-modular. Obviously, the difference in modularity manifests itself while bending as well. The article considers the stress state of bent solid and thin-walled beams of triangular cross-section. It leads to certain difficulties at stress computing, since the neutral section line position while bending depends on the ratio of Young modules under tension and compression. The problem under consideration is being solved in the article by the analytical method. The cross-section of the bent beam is being divided into two zones by a neutral line. Tension stresses are acting in one of the zones, while compression stresses are acting in the other one. An equilibrium equation is drawn up and formulas for the operating stresses computing are derived. Structurally, the article is divided into five parts and consists of an introduction, analysis of stresses in a bent beam of solid triangular section, the same analysis of a beam of thin-walled triangular section, examples of computing and conclusions. When analyzing the stress state, the K function is used, depending on the ratio of Young's modules for tension and compression, on the shape and size of the beam section, as well as on the neutral line position. The article presents formulas for determining maximum stresses in the cross sections. It includes five figures depicting the view of the refrigerator-radiator section, cross sections of solid and thin-walled beams, graphs of K functions for such beams. The examples include comparative results obtained with and without account for the actual position of the neutral line in the beam section. Conclusions present recommendations on the requirement to account for the difference in modularity of carbon-based materials, which may be useful in engineering practice.

Keywords:

power frame, triangular section beam, carbon fiber, bending, stress state, mechanical properties of carbon fiber

References

  1. Andreev P.V., Demidov A.S., Ezhov N.I. et al. Kosmicheskie yadernye energoustanovki i elektroraketnye dvigateli. Konstruktsiya i raschet detalei (Space nuclear power plants and electric rocket engines. Design and calculation of parts), Moscow, Izd-vo MAI, 2014, 507 p.

  2. Meleshko A.I., Polovnikov S.P. Uglerod, uglerodnye volokna, uglerodnye kompozity (Carbon, carbon fibers, carbon composites), Moscow, «Sains-Press», 2007, 192 p.

  3. Simamura S., Sindo A., Kotsuka K. et al. Uglerodnye volokna (Carbon fibers), Moscow, Mir, 1987, 304 p.

  4. Rach V.A., Tarasov Yu.M., Voskoboinikov V.N., Malkov I.V. 4-aya Moskovskaya mezhdunarodnaya konferentsiya «Teoriya i praktika tekhnologii proizvodstva izdelii iz kompozitsionnykh materialov i novykh metallicheskikh splavov (TPKMM)»: sbornik trudov. Moscow, 2005, pp. 425–429.

  5. Khaliulin V.I., Batrakov V.V. Tekhnologiya proizvodstva izdelii iz kompozitov: tekhnologiya integral'nykh konstruktsii (Технология производства изделий из композитов: технология интегральных конструкций), Kazan', Izd-vo KNITU-KAI, 2018, 192 p.

  6. Bratukhin A.G., Bogolyubov V.S., Sirotkin O.S. Tekhnologiya proizvodstva izdelii i integral'nykh konstruktsii iz kompozitsionnykh materialov v mashinostroenii (Technology of production of articles and integral structures from composite materials in mechanical engineering), Moscow, Gotika, 2003, 515 p.

  7. Bratukhin A.G. Tekhnologicheskoe obespechenie vysokogo kachestva, nadezhnosti, resursa aviatsionnoi tekhniki (Technological support of high quality, reliability, service life of aviation equipment), Moscow, Mashinostroenie, 1996, 297 p.

  8. Ambartsumyan S.A. Raznomodul'naya teoriya uprugosti (Multi-module theory of elasticity), Moscow, Nauka, 1982, 217 p.

  9. Pakhomov B.M. Vestnik MGTU im. N. E. Baumana. Seriya Mashinostroenie, 2017, no. 6, pp. 35–48.

  10. Kashelkin V.V., Demidov A.S., Kapustin E.A. Kosmicheskie apparaty i tekhnologii, 2022, no. 3(41), vol. 6, pp. 128-136.

  11. Rabotnov Yu.N. Mekhanika deformiruemogo tverdogo tela (Mechanics of deformable solids), Moscow, Nauka, 1979, 744 p.

  12. Ponomarev S.D., Biderman V.L., Likharev K.K. et al. Raschety na prochnost' v mashinostroenii (Strength calculations in mechanical engineering), Moscow, Mashgiz, 1958, vol. 2, 974 p.

  13. Shapochnikov N.A. Mekhanicheskie ispytaniya metallov (Mechanical testing of metals), Moscow, Mashgiz, 1954, 443 p.

  14. Khomovskii Ya.N. Otsenka napryazhenno-deformirovannogo sostoyaniya konstruktivnykh skhem pryamotochnykh vozdushno-reaktivnykh dvigatelei dlya vysokoskorostnykh letatel'nykh apparatov na rannei stadii proektirovaniya (Assessment of the stress-strain state of structural schemes of ramjet engines for high-speed aircraft at an early design stage), Doctor's thesis, 2018, MAI, 188 p.

  15. Kuznetsov E.B., Leonov S.S. Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 2013, vol. 6, no. 4, pp. 26–38.

  16. Goncharov R.B., Zuzov V.N., Chaiko D.N. Inzhenernyi zhurnal: nauka i innovatsii, 2019, no. 3, pp. 1–14.

  17. Kriven' G.I. Trudy MAI, 2022, no. 127. URL: https://trudymai.ru/eng/published.php?ID=170333. DOI: 10.34759/trd-2022-127-05

  18. Martirosov M.I., Khomchenko A.V. Trudy MAI, 2022, no. 126. URL: https://trudymai.ru/eng/published.php?ID=168990. DOI: 10.34759/trd-2022-126-04

  19. Yakovleva E.L., Atavin I.V., Kazakova Yu.D., Maksudov I.Kh. Stroitel'stvo unikal'nykh zdanii i sooruzhenii, 2017, no. 12 (63), pp. 125–139.

  20. Ryabov A.A., Zhelezov S.A., Rechkin V.N. et al. Trudy MAI, 2010, no. 41. URL: https://trudymai.ru/eng/published.php?ID=23813

  21. Tovstik P.E., Shekhovtsov A.S. Vestnik Sankt-Peterburgskogo universiteta. Seriya: Matematika. Mekhanika. Astronomiya, 2007, no. 4, pp. 47-51.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход