Algorithm for determining the parameters of oblinated projections of points on the earth's surface for circular orbits of space vehicles


Аuthors

Minakov E. P.*, Aleksandrov M. *, Mishcheryakov A. , Mishcheryakov S.

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: vka@mil.ru

Abstract

The task of determining the parameters of inclined projections of points on the surface of the Earth and the algorithm for determining the parameters of inclined projections of visibility zones of point objects for circular orbits of spacecraft of remote sensing of the Earth are presented, as well as an example of determining the boundaries of the inclined projection of parameters of inclined projections of visibility zones of point objects for circular orbits of spacecraft of remote sensing of the Earth. An approach is being considered to assess the effectiveness of the use of Earth remote sensing spacecraft, based not on route calculations, with significant computational costs, but on the use of inclined projections, which significantly reduces these costs. The obtained results demonstrate a high degree of coincidence of the longitude of the projection boundaries of the visibility zones of Earth remote sensing spacecraft with points for routes and inclined projections for both straight and reverse orbits, which indicates the adequacy of the proposed algorithm for determining the parameters of inclined projections of the visibility zones of point objects for circular orbits of Earth remote sensing spacecraft.

The algorithm allows you to obtain correct results, has extremely high information and operational characteristics and provides the opportunity to calculate inclined projections for groups of the same type of spacecraft of remote sensing of the Earth exactly once. This makes it possible to recommend a developed algorithm for solving the problems of determining coverage data and assessing the effectiveness of their application by regions on the Earth's surface for circular orbits of distan spacecraft

Keywords:

oblique projection, circular orbit, earth remote sensing spacecraft

References

  1. Minakov E.P., Shafigullin I.Sh., Zubachev A.M. Metody issledovaniya effektivnosti primeneniya organizatsionno-tekhnicheskikh sistem kosmicheskogo naznacheniya (Methods of a research of efficiency of application of organizational and technical systems of space appointment), Saint Petersburg, VKA imeni A.F.Mozhaiskogo, 2016, 242 p.
  2. Zinov'ev Yu.S., Mishina O.A., Zakharov A.Yu., Khatanzeiskaya M.A. Trudy MAI, 2019, no. 109. URL: https://trudymai.ru/eng/published.php?ID=111397. DOI: 10.34759/trd-2019-109-16
  3. Maletin A.N., Glushchenko A.A., Mishina O.A. Trudy MAI, 2022, no. 127. URL: https://trudymai.ru/eng/published.php?ID=170351. DOI: 10.34759/trd-2022-127-21
  4. Averkiev N.F., Vlasov R.P., Bogachev S.A. et al. Ballisticheskie osnovy proektirovaniya raket-nositelei i sputnikovykh sistem (Ballistic bases of design of carrier rockets and satellite systems), Saint Petersburg, VKA imeni A.F. Mozhaiskogo, 2017, 302 p.
  5. Averkiev N.F., Bogachev S.A., Vas'kov S.A. Osnovy teorii poleta letatel'nykh apparatov (Fundamentals of flight theory of aircraft), Saint Petersburg, VKA imeni A.F.Mozhaiskogo, 2013, 242 p.
  6. Mozzherin V.V. Matematicheskaya osnova kart (Mathematical basis of maps), Kazan': Kazanskii gosudarstvennyi universitet im. V.I. Ul'yanova-Lenina, 2023, 99 p.
  7. Minakov E.P., Aleksandrov M.A., Mishcheryakov A.V. Voprosy oboronnoi tekhniki. Seriya 16 «Tekhnicheskie sredstva protivodeistviya terrorizmu», 2023, no. 183-184, pp. 34-38.
  8. Grudinin I.V., Kochanov I.A. Aktual'nye problemy gumanitarnykh i estestvennykh nauk, 2016, no. 3-1, pp. 87-96.
  9. Minakov E.P., Aleksandrov M.A., Danilyuk B.A., Verbin A.V. Trudy MAI, 2023, no. 132. URL: https://trudymai.ru/eng/published.php?ID=176858
  10. Ananenko V.M., Golyakov A.D., Sasunkevich A.A. Izvestiya vuzov. Priborostroenie. 2022, vol. 65, no. 8. URL: https://pribor.ifmo.ru/file/article/21409.pdf. DOI: 10.17586/0021-3454-2022-65-8-565-574
  11. Minakov E.P., Aleksandrov M.A., Mishcheryakov A.V. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2023, no. 11, pp. 152–157.
  12. Mamon P.A., Polovnikov V.I. Prilozhenie teorem sfericheskoi trigonometrii k resheniyu prakticheskikh zadach (Application of spherical trigonometry theorems to solving practical problems), Saint Petersburg, VIKI, 1973, 27 p.
  13. Vasil'ev N.B., Gutenmakher V.L. Kvant, 1988, no. 2, pp. 55–56.
  14. Inzhenernyi spravochnik po kosmicheskoi tekhnike (Engineering Guide to Space Engineering), Moscow, MO SSSR, 1969, 696 p.
  15. Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov (Handbook of mathematics for scientists and engineers), Moscow, Nauka, 1978, 831 p.
  16. Bronshtein I.N., Semendyaev K.A. Spravochnik po matematike dlya inzhenerov i uchashchikhsya VTUZOV (Handbook of mathematics for engineers and students of VTUZOV), Moscow, OGIZ, 1948, 556 p.
  17. Barinov K.N., Burdaev M.N., Mamon P.A. Dinamika i printsipy postroeniya orbiфtal'nykh sistem kosmicheskikh apparatov (Dynamics and principles of spacecraft orbital systems construction), Moscow, Mashinostroenie, 1975, 232 p.
  18. Golyakov A.D. Vvedenie v teoriyu vzaimnoi navigatsii iskusstvennykh sputnikov Zemli (Introduction to the theory of mutual navigation of artificial Earth satellites), Saint Petersburg, VKA im. A.F. Mozhaiskogo, 1992, 142 p.
  19. Glushchenko A.A., Khokhlov V.P. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2021, no. 12, pp. 164-170.
  20. Sirotkin E.S., Podgornykh Yu.D. Sistemotekhnika v postroenii kompleksov i sistemy preduprezhdeniya o raketnom napadenii (Systems engineering in the construction of complexes and a missile attack warning system), Tver', MO RF, 2005, 332 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход