Аuthors

Minakov E. P.*, Aleksandrov M. A.*, Danilyuk B. A., Verbin A. V.*

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: vka@mil.ru

Abstract

The article considers discrete Markov model for efficiency estimating of orbital aids for safety zones monitoring of critically significant spacecraft by the probability of dangerous objects detecting indicators and mathematical expectation of the event occurrence number, associated with the use of resourcesща the orbital monitoring aids. The author adduces mathematical estimation models of the specified random events and definitions of the optimal and required values of transition probabilities, as well as examples of the said characteristics estimation and results of numerical experiments on each of the models being suggested. Practical meaningfulness of the obtained results consists the software developing, trying-out of mathematical models and software during numerical experiments, esteems obtaining of the orbital monitoring aids application effects and their correctness evaluation, as well as proposals on their employing for technical characteristics assessment and ways of the created orbital monitoring systems application.

Keywords:

orbital monitoring aids, dangerous objects, safety zone, critically significant space vehicle, indicator of efficiency, probability, mathematical expectation, discrete-time Markov chain, probability of transition, matrix, graph

References

  1. Kotyashov E.V. Trudy voenno-kosmicheskoi akademii imeni A.F. Mozhaiskogo, 2020, no. 672, pp. 25-32.

  2. Bondarenko A.V. 17-ya Mezhdunarodnaya konferentsiya "Aviatsiya i kosmonavtika - 2018", Moscow, Lyuksor, 2018, pp. 570-572.

  3. Efimov S., Pritykin D., Sidorenko V. Long-term Attitude Dynamics of Space Debris in Sunsynchronous Orbits: Cassini Cycles and Chaotic Stabilization, Celestial Mechanics and Dynamical Astronomy, 2018, vol. 130, no.10. DOI:10.1007/s10569-018-9854-4

  4. Pikalov R.S., Yudintsev V.V. Trudy MAI, 2018, no. 100. URL: https://trudymai.ru/eng/published.php?ID=93299

  5. Barkova M.E. Trudy MAI, 2018, no. 103. URL: https://trudymai.ru/eng/published.php?ID=100712

  6. Barkova M.E. Trudy MAI, 2022, no. 125. URL: https://trudymai.ru/eng/published.php?ID=168147. DOI: 10.34759/trd-2022-125-01

  7. Sokolov N.L. Trudy MAI, 2014, no. 77. URL: http://trudymai.ru/eng/published.php?ID=52950

  8. Minakov E.P., Shafigullin I.Sh., Zubachev A.M. Metody issledovaniya effektivnosti primeneniya organizatsionno-tekhnicheskikh sistem kosmicheskogo naznacheniya (Methods of studying the effectiveness of the use of organizational and technical systems for space purposes), Saint Petersburg, VKA imeni A.F. Mozhaiskogo, 2016, 244 p.

  9. Zamalyutdinov R.Yu., Ladoshkin A.I. Studencheskii forum, 2019, no. 8 (59), pp. 44–45.

  10. Zubkov A.M., Filina M.V. Diskretnaya matematika, 2020, vol. 32, no. 4. pp. 38–51. DOI: https://doi.org/10.4213/dm1622

  11. Perepelkin E.A. Vtoraya Vserossiiskaya nauchnaya konferentsiya “Modelirovanie i situatsionnoe upravlenie kachestvom slozhnykh sistem”, Sankt-Peterburg, 2021, pp. 38–39. DOI: 10.31799/978-5-8088-1558-2-2021-2-38-39

  12. Bylinina Yu.V. Teoreticheskii i prakticheskii potentsial sovremennoi nauki: sbornik nauchnykh statei, Moscow, Izd-vo Pero, 2020, pp. 103-107.

  13. Tsakhoeva A.F., Gasparyan A.F. Byulleten' Vladikavkazskogo instituta upravleniya, 2018, no. 55, pp. 154–159.

  14. Zhiyan Shi, Dan Bao Baihui Wu. The asymptotic equipartition property of Markov chains in single infinite Markovian environment on countable state space, Stochastics, 2019, vol. 91, no. 6, pp. 945–957. DOI:10.1080/17442508.2019.1567730

  15. Wenguang Yu, Peng Guo, Qi Wang et al. On a periodic capital injection and barrier dividend strategy in the compound Poisson risk model, Mathematics, 2020, vol. 8, no. 4, pp. 511. DOI:10.3390/math8040511

  16. Borsoev V.A., Lebedev A.M., Stepanov S.M. Nauchnyi vestnik MGTU GA, 2011, no. 171, pp. 89-95.

  17. Krasnov M.L., Kiselev A.I., Makarenko G.I. Operatsionnoe ischislenie. Teoriya ustichivosti: Zadachi i primery s podrobnymi resheniyami (Operational calculus. The theory of consistency: Problems and examples with detailed solutions), Moscow, Editorial URSS, 2003, 176 p.

  18. Minakov E.P. Trudy Voenno-kosmicheskoi akademii imeni A.F.Mozhaiskogo, 2012, no. 634, pp. 41-44.

  19. Minakov E.P., Bugaichenko P.K. Trudy Voenno-kosmicheskoi akademii imeni A.F.Mozhaiskogo, 2015, no. 646, pp. 24-28.

  20. Sokolov B.V., Minakov E.P. Trudy SPIIRAN, 2016, no. 5(48). pp. 182-197. DOI: 10.15622/sp.48.9


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход