Variable-length link model with controllable stiffness and movable pole for aerospace exosuit


Аuthors

Blinov A. O.1*, Borisov A. V.1**, Mukharlyamov R. G.2***, Goncharova I. A.1****, Borisova V. L.3*****

1. the Branch of National Research University «Moscow Power Engineering Institute» in Smolensk, 1 Energeticheskiy proezd, Smolensk, Russia, 214013
2. Peoples' Friendship University of Russia, 6, Miklukho-Maklaya str., Moscow, Russia, 117198
3. Smolensk State Academy of Agriculture, 10/2 Bolshaya Sovetskaya str., Smolensk, Russia, 214000

*e-mail: alex-blinov67@yandex.ru
**e-mail: BorisowAndrej@yandex.ru
***e-mail: robgar@mail.ru
****e-mail: goncharovainnaa@yandex.ru
*****e-mail: borisowaveronika@yandex.ru

Abstract

The article considers a model of a variable-length link containing a magnetorheological fluid for actively controlling its stiffness under the influence of a changing external magnetic field. The distinguishing feature of the proposed model, compared to those created previously, is the presence of a movable pole at the lower point of the link with a specified law of motion, for example, due to the movement of a link positioned below. Thus, the link model has seven degrees of freedom: three translational movements of the pole, three rotations around the pole, and variable link length when the upper part moves relative to the pole. In the proposed link construction, all elements are modeled as cylinders or disks of finite radius. Moments of inertia are defined for them relative to axes passing through the link's origin for the three coordinate axes. It is taken into account that the amount of magnetorheological fluid below and above the piston changes as it moves inside the cylinder, with changes in the link's length. This changes the moment of inertia of the link. This determines the novelty of the research. The dynamics of the link are described by Lagrange's equations, constituting a system of seven ordinary second-order differential equations. A software-based motion control method is selected, and based on it, the inverse dynamics problem is solved - determining the control moments and forces that need to be applied to realize the specified link movements. The created link model, when combined into a multi-link structure, can find application in the development of exoskeletons in the form of spacesuits, protective exoskeletons enhancing and supporting the physical capabilities of pilots and astronauts in the aerospace industry.

Keywords:

spacesuit, exosuit, exoskeleton, variable length, magnetorheological fluid, controllable stiffness

References

  1. Borisov A.V., Kaspirovich I.E., Mukharlyamov R.G. Izvestiya RAN. Teoriya i sistemy upravleniya, 2021, no. 5, pp. 162-176. DOI: 10.31857/S0002338821040028

  2. Nordin M., Frankel H. Basic Biomechanics of the Musculoskeletal System. Lippicot, London, Williams & Wilkins, 2001, 467 p.

  3. Borisov A.V., Chigarev A.V. Mathematical Models of Exoskeleton. Dynamics, Strength, Control. Monograph, Springer, 2022, 232 p. URL: https://link.springer.com/book/10.1007/978-3-030-97733-7. DOI: 10.1007/978-3-030-97733-7

  4. Borisov A.V., Chigarev A.V. The Causes of a Change in The Length of a Person’s Link and Their Consideration When Creating an Exoskeleton, Biomedical Journal of Scientific and Technical Research, 2020, vol. 25, pp. 18769-18771. DOI: 10.26717/BJSTR.2020.25.004137

  5. Piña-Martínez E., Rodriguez-Leal E. Inverse Modeling of Human Knee Joint Based on Geometry and Vision Systems for Exoskeleton Applications, Mathematical Problems in Engineering, 2015, pp. 1-14. DOI: 10.1155/2015/145734

  6. Borisov A.V., Kaspirovich I.E., Mukharlyamov R.G., Filippenkov K.D. Izvestiya vuzov. Aviatsionnaya tekhnika, 2022, no. 1, pp. 60-69.

  7. Blinov A., Borisov A., Filippenkov K., Konchina L., Maslova K. Modeling the dynamics of an exoskeleton link of variable length using the Lagrange – Maxwell system of differential equations of motion, Journal of Applied Informatics, 2022, vol. 99, no. 3, pp. 117-130. DOI: 10.37791/2687-0649-2022-17-3-117-130

  8. Borisov A.V., Volkova Yu.E., Konchina L.V., Maslova K.S. Spravochnik. Inzhenernyi zhurnal s prilozheniem, 2020, no. 9, pp. 54–64. DOI: 10.14489/hb.2020.09.pp.054-064

  9. Blinov A.O., Borisov A.V., Konchina L.V., Kulikova M.G., Maslova K.S. Rossiiskii zhurnal biomekhaniki, 2023, no. 4, pp. 186-199. URL: https://vestnik.pstu.ru/biomech/archives/?id=&folder_id=11774. DOI: 10.15593/RZhBiomeh/2023.4.15

  10. Blinov A., Borisov A., Konchina L., Novikova M. Applying the models of magneto- rheological substances in the study of exoskeleton variable-length link with adjustable stiffness // Journal of Applied Informatics, 2022, vol. 98, no. 2, pp. 133-142. DOI: 10.37791/2687-0649-2022-17-2-133-142

  11. Blinov, A.O., Borisov, A.V., Mukharlyamov, R.G. Mathematical Simulation of Dynamics for Exoskeleton Including Variable-Length Links with Adjustable Stiffness, In: Azimov, D. (eds) Proceedings of the IUTAM Symposium on Optimal Guidance and Control for Autonomous Systems 2023. IUTAM 2023. IUTAM Bookseries, vol 40, pp 117–131. Springer, Cham. URL: https://doi.org/10.1007/978-3-031-39303-7_8

  12. Borisov A.V., Mukharlyamov R.G. Dynamics of two-link exoskeleton support leg, considering payload and adjustable stiffness, Proc. SPIE 12986, Third International Scientific and Practical Symposium on Materials Science and Technology (MST-III 2023), 1298603 (19 January 2024). URL: https://doi.org/10.1117/12.3016477

  13. Blinov A.O., Borisov A.V., Konchina L.V., Novikova M.A., Chigarev A.V. Razrabotka metodov upravleniya svoistvami magnitno-reologicheskoi sredy s tsel'yu regulirovaniya zhestkosti zvena peremennoi dliny ekzoskeleta, Advanced Engineering Research, 2022, vol. 22, no. 4, pp. 296–305. URL: https://doi.org/10.23947/2687-1653-2022-22-4-296-305

  14. Badyaeva V.K., Blinov A.O., Borisov A.V., Mukharlyamov R.G. Rossiiskii zhurnal biomekhaniki, 2022, no. 3, pp. 87-97. DOI: 10.15593/RZhBiomeh/2022.3.07

  15. Badyaeva V.K., Blinov A.O., Borisov A.V., Mukharlyamov R.G. Izvestiya vuzov. Aviatsionnaya tekhnika, 2022, no. 4, pp. 51-60.

  16. Vasenin S.A., Reshmin S.A. Optimal Suppression of Oscillations in the Problem of a Spin-Up of a Two-Mass System, Journal of Computer and Systems Sciences International, 2023, vol. 62, pp. 942–955. URL: https://doi.org/10.1134/S1064230723060114

  17. Błażkiewicz M., Hadamus A. Influence of Perturbation’s Type and Location on Treadmill Gait Regularity, Applied Sciences, 2024, vol. 14 (2), pp. 493. URL: https://doi.org/10.3390/app14020493

  18. Park C., Park K. Dynamic Stability of Human Walking in Response to Sudden Speed Changes, Symmetry, 2024, vol. 16 (1), pp. 26. URL: https://doi.org/10.3390/sym16010026

  19. Chandrasekaran S., Ngo C., Lueken M., Bollheimer C., Wolf A., Leonhardt S. On Gait Stability: Correlations between Lyapunov Exponent and Stride Time Variability, Current Directions in Biomedical Engineering, 2022, vol. 8, no. 2, pp. 564-567. URL: https://doi.org/10.1515/cdbme-2022-1144

  20. Pan Q. et al. A Nonresonant and Frequency Up-Conversion Motion Converter for Footstep Energy Harvesting, IEEE/ASME Transactions on Mechatronics, 2024. DOI: 10.1109/TMECH.2023.3341411

  21. Tijjani I., Kumar S., Boukheddimi M. A Survey on Design and Control of Lower Extremity Exoskeletons for Bipedal Walking, Applied Sciences, 2022, vol. 12, pp. 2395. URL: https://doi.org/10.3390/app12052395

  22. Su Q., Pei Z., Tang Z., Liang Q. Design and Analysis of a Lower Limb Loadbearing Exoskeleton, Actuators, 2022, vol. 11 (10), pp. 285. URL: https://doi.org/10.3390/act11100285

  23. Bourgeois A., Rice B., Goh C.-H. Design Optimization of the Lift Mechanism in the Robotic Walking Training Device Using the Engineering Design Methodology, Applied Sciences, 2023, vol. 14 (1), pp. 327. URL: https://doi.org/10.3390/app14010327

  24. Heo Y., Choi H-J., Lee J-W., Cho H-S., Kim G-S. Motion-Based Control Strategy of Knee Actuated Exoskeletal Gait Orthosis for Hemiplegic Patients: A Feasibility Study, Applied Sciences, 2023, vol. 14(1), pp. 301. URL: https://doi.org/10.3390/app14010301

  25. Capitani S.L., Bianchi M., Secciani N. et al. Model-based mechanical design of a passive lower-limb exoskeleton for assisting workers in shotcrete projection, Meccanica, 2021, vol. 56, pp. 195–210. URL: https://doi.org/10.1007/s11012-020-01282-3

  26. Guo Y-Q., Luo W-H., Xu Z-D., Shu B-M., Yang D-K. Research on the Design and Gait Planning of a Hexapod Robot Based on Improved Triangular Gait for Lunar Exploration, Applied Sciences, 2024, vol. 14 (1), pp. 260. URL: https://doi.org/10.3390/app14010260

  27. Petrov Yu.A., Breshev E.N., Sergeev D.V. Trudy MAI, 2023, no. 133. URL: https://trudymai.ru/eng/published.php?ID=177654

  28. Bernikov A.S., Petrov Yu.A., Sergeev D.V., Shtokal A.O. Trudy MAI, 2021, no. 121. URL: https://trudymai.ru/eng/published.php?ID=162657. DOI: 10.34759/trd-2021-121-10

  29. Chen J., Liao W. Design and control of a Magnetorheological actuator for leg exoskeleton, 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO), Sanya, 2007, pp. 1388-1393. DOI: 10.1109/ROBIO.2007.4522367

  30. Belyaev E.S., Ermolaev A.I., Titov E.Yu., Tumakov S.F. Magnitoreologicheskie zhidkosti: tekhnologii sozdaniya i primenenie (Magnetorheological fluids: technologies for creation and application), Nizhnii Novgorod, NGTU im. R.E. Alekseeva, 2017, 94 p.

  31. Simon Laflamme. Online learning algorithm for structural control using magnetorheological actuators, Massachusetts Institute of Technology, 2007, 88 p. URL: https://dspace.mit.edu/bitstream/handle/1721.1/39271/170931934-MIT.pdf?sequence=2

  32. Psomopoulou E., Doulgeri Z., Rovithakis G., Tsagarakis N. A Simple Controller for a Variable Stiffness Joint with Uncertain Dynamics and Prescribed Performance Guarantees, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 7-12, 2012, Vilamoura, Algarve, Portugal, pp. 5071–5076. DOI: 10.1109/BioRob.2012.6290757

  33. Blinov A.O. Voprosy oboronnoi tekhniki. Seriya 16. Tekhnicheskie sredstva protivodeistviya terrorizmu, 2023, no. 1-2 (175-176), pp 11-19.

  34. Ahmadkhanlou F., Zite J.L., Washington G.N. A magnetorheological fluid-based controllable active knee brace, In Proceedings SPIE - The International Society for Optical Engineering, 2007, vol. 6527. DOI: 10.1117/12.715902

  35. Andrade R.M., Fabriz Ulhoa P.H., Fragoso Dias E.A. Design and testing a highly backdrivable and kinematic compatible magneto-rheological knee exoskeleton, Journal of Intelligent Material Systems and Structures, 2022, vol. 5. DOI: 10.1177/1045389X221117496

  36. Bougrinat Y. Design and development of a lightweight ankle exoskeleton for human walking augmentation, Avril, Université de Montréal, 2018, 114 p URL: https://publications.polymtl.ca/3076/1/2018_YacineBougrinat.pdf

  37. Carlson J. Magnetorheological Fluid Actuators. Adaptronics and Smart Structures: Basics, Materials, Design, and Applications, 2013, 1808 p.

  38. Zubarev A.Yu., Chirikov D.N. Kolloidnyi zhurnal, 2013, vol. 75, no. 5, pp. 567–576.

  39. Konovalova N.I., Martynov S.I. Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki. Matematika, 2009, no. 3 (11), pp. 3-11.

  40. Makarova L.A. Issledovanie magnitnykh i elektricheskikh svoistv kompozitnykh reologicheskikh materialov na osnove ferromagnitnykh i segnetoelektricheskikh napolnitelei (Study of the magnetic and electrical properties of composite rheological materials based on ferromagnetic and ferroelectric fillers): dissertation abstract, Moscow, MGU im. Lomonosova, 2018, 27 p.

  41. Naigert K.V., Tselishchev V.A. Prikladnye svoistva magnitoreologicheskikh zhidkostei (Applied properties of magnetorheological fluids: textbook), Ufa, UGATU, 2021.

  42. Chirikov D.N. Teoreticheskoe issledovanie reologicheskikh svoistv bidispersnykh magnitnykh zhidkostei (Theoretical study of the rheological properties of bidisperse magnetic fluids), Ekaterinburg, Ural'skii federal'nyi universitet imeni pervogo Prezidenta Rossii B.N. El'tsina, 2013, 17 p.

  43. Lebedev A.V. Viscosity of magnetic fluids must be modified in calculations of dynamic susceptibility, Journal of Magnetism and Magnetic Materials, 2017, vol. 431, pp. 30–32. URL: https://doi.org/10.1016/j.jmmm.2016.09.110

  44. Dollar A.M., Herr H. Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art, IEEE Transactions on robotics, 2008, vol. 24, pp. 144-158.

  45. Glowinski S., Krzyzynski T., Bryndal A., Maciejewski I. A Kinematic Model of a Humanoid Lower Limb Exoskeleton with Hydraulic Actuators, Sensors, 2020, vol. 20, pp. 6116. URL: https://doi.org/10.3390/s20216116

  46. Glowinski S., Obst M., Majdanik S., Potocka-Banaś B. Dynamic Model of a Humanoid Exoskeleton of a Lower Limb with Hydraulic Actuators, Sensors, 2021, vol. 21 (10), pp. 3432. URL: https://doi.org/10.3390/s21103432

  47. Lee T., Lee D., Song B., Baek Y.S. Design and Control of a Polycentric Knee Exoskeleton Using an Electro-Hydraulic Actuator, Sensors, 2020, vol. 20, pp. 211. URL: https://doi.org/10.3390/s20010211


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход