About one method of approximate solution of the first boundary value problem for the fractional diffusion equation, used in gas dynamics


Аuthors

Zakharov I. I.*, Aleroev T. S.**

Moscow State University of Civil Engineering, MSUCE, 26, Yaroslavskoe shosse, Moscow, 129337, Russia

*e-mail: kroshvanya@yandex.ru
**e-mail: aleroev@mail.ru

Abstract

This paper is devoted to the development of fundamentally new analytical and approximate methods for studying mathematical models of advection-diffusion using fractional calculus. Obtained results can have applications in various fields of applied mathematics and engineering. In particular, in the design of modern rocket engines (supersonic jet engines). The fractional operators for this problem are considered in the Caputo sense. The problem is solved by the method of separation of variables (Fourier method). In the first section of the paper the theoretical aspects of the problem are presented. An important part of this section is the construction of the basis of the systems of eigenfunctions and adjoint functions of the problem. In this question we strongly rely on the work of Dzhrbashyan and Nersesyan. Taking into account the biorthogonality of such systems and the fact that the adjoint functions are finite in number, for further solution we can consider only the problem in which the adjoint functions are not generated. Passing to the solution of the problem, we consider the system of eigenfunctions of the biorthogonal problem, since the basis of the eigenfunctions of the problem is not orthogonal in . In order to determine the unknown coefficients of the Fourier series, due to the biorthogonality of the systems of functions, we use the scalar product of the corresponding functions. The eigenvalues of the problem are found as zeros of the Mittag-Leffler function. Thus, to solve the problem, we first find several eigenvalues. We construct eigenfunctions and functions of the conjugate problem. Since for an approximate solution of the problem it is sufficient to take only the first few terms of the series, we can construct the solution surfaces by considering only the partial sum of the obtained solution.

Keywords:

approximate calculations, fractional calculus, fractional advection-diffusion equation, fractional Caputo derivative, eigenvalue, eigenfunction, Mittag-Leffler function

References

  1. Zakharov I.I., Aleroev T.S. Trudy MFTI, 2024, vol. 16, no. 1, pp. 60–67.

  2. Gorenflo R., Mainardi F. Fractional Calculus: Integral and Differential Equations of Fractional Order. In: Carpinteri, A. and Mainardi, F., Eds., Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, New York, 1997, pp, 223-276.

  3. Mainardi F. The fundamental solutions for the fractional diffusion-wave equation, Applied Mathematics Letters, 1996, vol. 9, no. 6, pp. 23-28. DOI: 10.1016/0893-9659(96)00089-4

  4. Wyss W. The fractional diffusion equation, Journal of Mathematical Physics, 1986, vol. 27, no. 11, pp. 2782-2785. DOI: 10.1063/1.527251

  5. Agrawal O. Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynamics, 2002, vol. 29, pp. 145-155. DOI: 10.1023/A:1016539022492

  6. Aleroev T., Kirane M., Tang. The boundary-value problem for a differential operator of fractional order, Journal of Mathematical Sciences, 2013, vol. 194, pp. 499-512. DOI: 10.1007/s10958-013-1543-y

  7. Nakhushev A. Drobnoe ischislenie i ego primenenie (Fractional calculus and its applications), Moscow, Fizmatlit, 2003, 271 p.

  8. Dzhrbashyan M., Nersesyan A. Trudy Moskovskogo matematicheskogo obshchestva, 1961, vol. 10, pp. 89–179.

  9. Luchko Y Some uniqueness and existence results for the initial-boundary value problems for the generalized time-fractional diffusion equation, Computers and Mathematics with Applications, 2010, vol. 59, no. 5, pp. 1766-1772. DOI: 10.1016/j.camwa.2009.08.015

  10. Aleroev T., Aleroeva H. Problems of Sturm-Liouville type for differential equations with fractional derivatives. In: Kochubei, A., Luchko Y. Editors, Handbook of Fractional Calculus with Applications. V 2: Fractional Differential Equations, Berlin, Boston: De Gruyter, 2019.

  11. Aleroev T. Solving the boundary value problems for differential equations with fractional derivatives by the method of separation of variables, Mathematics, 2020, vol. 8, no. 11, pp. 1877. DOI: 10.3390/math8111877

  12. Aleroev T., Aleroeva H., Huang J., Tamm M., Tang Y., Zhao Y. Boundary value problems of fractional Fokker-Planck equations, Computers and Mathetics with Applications, 2017, vol. 73, no. 6, pp. 959-969. DOI: 10.1016/j.camwa.2016.06.038

  13. Mahmoud E.I., Aleroev T.S. Boundary Value Problem of Space-Time Fractional Adverction Diffuion Equation, Mathematics, 2022, vol. 10, no. 3160, pp. 1-12. DOI: 10.3390/math10173160

  14. Ali Tfayli. Sur quelques equations aux derivees partielles fractionnaires, theorie et applications. Mecanique des fluides [physics.class-ph], Francais, Universite de La Rochelle, 2020.

  15. Snazin A.A., Shevchenko A.V., Panfilov E.B., Prilutskii I.K. Trudy MAI, 2021, no. 119. URL: https://trudymai.ru/eng/published.php?ID=159782. DOI: 10.34759/trd-2021-119-05

  16. Zhong W., Zhang T., Tamura T. CFD Simulation of Convective Heat Transfer on Vernacular Sustainable Architecture: Validation and Application of Methodology, Sustainability, 2019, vol. 11 (15), pp. 4231. DOI: 10.3390/su11154231

  17. Larina E.V., Kryukov I.A., Ivanov I.E. Trudy MAI, 2016, no. 91. URL: https://www.trudymai.ru/eng/published.php?ID=75565

  18. Mitrofanova Yu.A., Zagitov R.A., Trusov P.V. Trudy MAI, 2023, no. 132. URL: https://trudymai.ru/eng/published.php?ID=176856

  19. Benderskii L.A., Lyubimov D.A. Aviatsionnye dvigateli, 2022, no. 2 (15), pp. 5–12. DOI: 10.54349/26586061_2022_2_05

  20. Sposobin A.V. Trudy MAI, 2021, no. 119. URL: https://trudymai.ru/eng/published.php?ID=159777. DOI: 10.34759/trd-2021-119-04

  21. Gorodnov A.O., Laptev I.V. Trudy MAI, 2021, no. 116. URL: https://trudymai.ru/eng/published.php?ID=121008. DOI: 10.34759/trd-2021-116-02
  22. Aleroeva Kh.T. Trudy MAI, 2017, no. 92. URL: https://trudymai.ru/published.php?ID=76821


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход