Lower accuracy estimation of uniform rational approximation in georeferencing problems


Аuthors

Bakharev A. *, Mesyats A. **

S. P. Korolev Rocket and Space Corporation «Energia», 4A Lenin Street, Korolev, Moscow area, 141070, Russia

*e-mail: post@rsce.ru
**e-mail: aleksey.mesyats@rsce.ru

Abstract

This paper discusses the problem of determining the limitations of rational function sensor model. Rational function model (RFM) is a generalized sensor model; it approximates the complex rigorous sensor model by utilizing a multitude of parameters (coefficients).
Various algorithms exist for calculating RFM parameters based on different approaches, such as solving the linearized approximation problem and integral method. In a best-case scenario most of the algorithms perform similarly, providing decent results. However, for more complex shooting parameters calculation algorithms are affected by input data differently and provide varying approximation quality. Separating the model approximation limits from the algorithm constraints is not trivial.
For a polynomial fitting in the one-dimensional case the theorem of de la Vallee-Poussin can be used to obtain lower estimate on the accuracy of the best uniform approximation. This theorem was generalized to a wider class of functions including rational functions of a single argument. This paper proposes an approach of obtaining lower estimate of the accuracy of uniform approximation by rational functions of multiple arguments. This approach is based on the selection of a subset of the estimated region consisted of segments. For each of those segments the multiple argument problem can be substituted by a single argument problem. Next, the generalized theorem can be applied to find the lower estimate of the error of uniform approximation.
This approach is applied to the georeferencing problem. The method of estimating the influence of the scene extent on the approximation accuracy is described. The presented results are validated using the real remote sensing satellite data.

Keywords:

remote sensing, georeferencing, rational function model, approximation accuracy estimation

References

  1. Tolchenov A.A., Sudorgin A.S. Trudy MAI, 2015, no. 81. URL: https://trudymai.ru/eng/published.php?ID=57854
  2. Korneev M.A., Maksimov A.N., Maksimov N.A. Trudy MAI, 2012, no. 58. URL: https://trudymai.ru/eng/published.php?ID=33061
  3. Sentsov A.A., Nenashev V.A., Ivanov S.A., Turnetskaya E.L. Trudy MAI, 2021, no. 117. URL: https://trudymai.ru/eng/published.php?ID=156227. DOI: 10.34759/trd-2021-117-08
  4. Ye Jiang, Lin Xu, Xu Tao. Mathematical Modeling and Accuracy Testing of WorldView-2 Level-1B Stereo Pairs without Ground Control Points, Remote Sensing, 2017, no. 9 (7), pp. 737. DOI: 10.3390/rs9070737
  5. Zanin K.A. Trudy MAI, 2018, no. 102. URL: https://trudymai.ru/eng/published.php?ID=98988
  6. Tao C.V., Hu Y. Use of the Rational Function Model for Image Rectification, Canadian Journal of Remote Sensing, 2004, vol. 27, no. 6, pp. 593-602. DOI: 10.1080/07038992.2001.10854900
  7. Tao C.V., Hu Y. A Comprehensive study of the rational function model for photogrammetric processing, Photogrammetric Engineering and Remote Sensing, 2001, vol. 67, no. 12, pp. 1347–1357.
  8. Salazar Celis. Practical rational interpolation of exact and inexact data: theory and algorithms. PhD thesis, Department of Computer Science, University of Antwerp, 2008.
  9. Austin A.P., Krishnamoorthy M., Leyffer S., Mrenna S., Müller J., Schulz H. Practical algorithms for multivariate rational approximation, Computer Physics Communications, 2021, vol. 261. DOI: 10.1016/j.cpc.2020.107663
  10. Gholinejad S., Naeini A.A., Amiri-Simkooei A. Robust Particle Swarm Optimization of RFMs for High-Resolution Satellite Images Based on K-Fold Cross-Validation, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, vol. 12, no. 8, pp. 2594-2599. DOI: 10.1109/JSTARS.2018.2881382
  11. Long T., Jiao W., He G. RPC Estimation via ℓ1-Norm-Regularized Least Squares (L1LS), IEEE Transactions on Geoscience and Remote Sensing, 2015, vol. 53, no. 8, pp. 4554-4567. DOI: 10.1109/TGRS.2015.2401602
  12. Busarova D.A., Mesyats A.I., Prokop'ev V.P. XX nauchno-tekhnicheskaya konferentsiya molodykh uchenykh i spetsialistov: tezisy dokladov. Korolev, Izd-vo RKK Energiya imeni S.P. Koroleva, 2014, pp. 172.
  13. Romanov A.Ya. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, vol. 5, no. 1, pp. 311-314.
  14. Poshekhonov V.I., Kuznetsov A.E., Egin M.M. Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta, 2023, no. 83, pp. 95-101. DOI: 10.21667/1995-4565-2023-83-95-101
  15. Dzyadyk V.K. Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami (Introduction to the uniform approximation theory of functions with polynomials), Мoscow, Nauka, 1977, 511 p.
  16. Akhiezer N.I. Lektsii po teorii approksimatsii (Lectures on approximation theory), Moscow, Nauka, 1965, 407 p.
  17. Sukhorukova N., Ugon J., Yost D. Chebyshev Multivariate Polynomial Approximation: Alternance Interpretation, 2018. DOI: 10.1007/978-3-319-72299-3_8
  18. Sukhorukova N., Ugon J. A generalisation of de la Vallée-Poussin procedure to multivariate approximations, Advances in Computational Mathematics, 2022, vol. 48 (1). DOI: 10.1007/s10444-021-09919-x
  19. Millán R., Peiris V., Sukhorukova N., Ugon J. Multivariate approximation by polynomial and generalized rational functions, Optimization, 2022, vol. 71, pp. 1-17. URL: https://doi.org/10.1080/02331934.2022.2044478
  20. Mishchenko A.S., Fomenko A.T. Kratkii kurs differentsial'noi geometrii i topologii (A brief course of differential geometry and topology), Moscow, Fizmatlit, 2004, 298 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход