Developing a model of space radar bistatic interferometer basic parameters

Radiolocation and radio navigation


Аuthors

Zanin K. A.

Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia

e-mail: pc4a@laspace.ru

Abstract

The article introduces a mathematical model of basic parameters of the bistatic space interferometer with two synthetic aperture radars. The space interferometric survey consists in obtaining a digital model of the terrain relief. Bistatic (tandem) interferometric survey implies simultaneous operation of the two spacecraft. In this mode, two synthetic aperture radars form interferometer defining the phase difference of the signal incoming from the Earth surface. However, high accuracy of defining space vehicles position and phase stability of the radio electronic path is required.

At present, several commercial digital relief models exist in the world. The most complete in coverage and best in accuracy is the DLR model obtained by “Terrasar-X” – “Tandem-X” spacecraft in bistatic mode of radar operation.

Relief height definition in bistatic interferometric mode requires minimum amount of a priori information, though it requires high accuracy of defining space vehicles position and phase stability of the radio electronic path.

The article analyses selection of the interferometer basic parameters with account for the requirements of the relief height determining accuracy. The impact of position determination errors of space vehicles in space on measurement errors is being evaluated. As an example, the analysis of the requirements to navigational and ballistic provision of interferometric tandem spacecraft “Terrasar-X” and “Tandem-X” is presented.

Keywords:

space synthetic aperture radar, digital elevation model, bistatic interferometer, precision

References

  1. Frey O., Meier E., Nüesch D., Roth A. Geometric Error Budget Analysis for TerraSAR-X, Processing of the EUSAR 2004 Conference, Ulm, 2004, Germany, available at: https://pdfs.semanticscholar.org/940e/0bf72a48c14632a331e02d901a60bb56a344.pdf

  2. Zanin K.A., Mit’kin A.S., Moskatin’ev I.V. Vestnik NPO im. S.A. Lavochkina, 2016, no. 2 (32), pp. 61 – 68.

  3. Evgrafov A.E., Pol’ V.G., Shostak S.V. Vestnik NPO im. S.A. Lavochkina, 2018, no. 1, pp. 19 – 26.

  4. Bachmanov M.M., Iskov D.A. Kosmonavtika i raketostroenie, 2017, no. 2 (95), pp. 117 – 125.

  5. Makridenko L.A., Volkov S.N., Gecha V.Ya., Zhilinev M.Yu., Kazantsev S.G. Voprosy elektromekhaniki. Trudy VNIIEM, 2017, vol. 160, no. 5, pp. 3 – 19.

  6. Keydel W. Normal and Differential SAR Interferometry. In Radar Polarimetry and Interferometry // Educational Notes RTO-EN-SET-081bis, 2007 Paper 2. Neuilly-sur-Seine, France, RTO: http://www.rto.nato.int/abstracts.asp

  7. Evgrafov A.E., Pol’ V.G. Vestnik NPO im. S.A. Lavochkina, 2014, no. 4, pp. 44 – 49.

  8. Bulygin M.L. Trudy MAI, 2018, no. 100, available at: http://trudymai.ru/eng/published.php?ID=93428

  9. Ovodenko V.B., Trekin V.V. Trudy MAI, 2016, no. 88, available at: http://trudymai.ru/eng/published.php?ID=70690

  10. Younis M., Metzig R., Krieger G. Performance prediction of a phase synchronization link for bistatic SAR, IEEE Geoscience and Remote Sensing Letters, 2006, vol. 3, no. 3, pp. 429 – 433.

  11. Jia Tu, Defeng Gu, Yi Wu, and Dongyun Yi. Error Modeling and Analysis forInSAR Spatial Baseline Determination of Satellite Formation Flying. Hindawi Publishing Corporation, Mathematical Problems in Engineering, Volume 2012, Article ID 140301, 23 p.

  12. Pettinato S., Santi E., Paloscia S., Pampaloni P., Fontanelli G. The Intercomparison of X-Band SAR Images from COSMO-SkyMed and TerraSAR-X Satellites: Case Studies, Remote Sensing, 2013, vol. 5, no. 6, pp. 2928 – 2942, available at: https://doi.org/10.3390/rs5062928

  13. Fritz T., Eineder M. TerraSAR-X Ground Segment. Basic Product Specification Document, DLR, 2010, available at: http://www.infoterra.de/asset/cms/file/tx-gs-dd-3302_basic-product-specification-document_v1.7.pdf

  14. Krieger G., Fiedler H., Mittermayer J., Papathanassiou K., Moreira A. Analysis of multistatic configurations for spaceborne SAR interferometry, IEE Proc.-Radar Sonar Navigation, June 2003, vol. 150, no. 3, doi: 10.1049/ip-rsn:20030441

  15. Carlos L.M. Specle noise characterization and filtering in polarimetric SAR data, ESA Advanced Course on Radar Polarimetry, 2011, available at: https://earth.esa.int/documents/10174/669756/Speckle_Noise_Characterisation.pdf

  16. Luo H.B., He X.F., He M. Anаlizing on pixel positioning accuracy of SAR imaging based on R-D location model, BEIJING ISPRS, 2008, available at: http://www.isprs.org/proceedings/XXXVII/congress/1_pdf/43.pdf

  17. Carrara W.G, Goodman R.S., Majewski R.M. Spotlight Synthetic Aperture Radar. Signal Processing Algorithms. Artech House, Norwood, MA, 1995, 554 p.

  18. Cumming I.G., Wong F.H. Digital Processing of Synthetic Aperture Radar Data. Algorithms and Implementation. Artech House, Norwood, MA, 2005, 625 p.

  19. Curlander J., McDonough R. Synthetic Aperture Radar. Systems and Signal Processing. John Wiley & Sons, New York, 1991, 333 p.

  20. D’Aria D., Guarnieri A.M., Rocca F. Focusing Bistatic Synthetic Aperture Radar using Dip Move Out, IEEE Transactions on Geoscience and Remote Sensing, 2004, vol. 42, no. 7, pp. 1362 – 1376.


Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход