Numerical study of impact interaction of pneumatic fragments of an aircraft tire with a carbon fiber panel


Аuthors

Medvedsky A. L.1*, Martirosov M. I.2**, Khomchenko A. V.2***, Zanina E. A.2****

1. Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), Zhukovsky, Moscow region, Russia
2. PJSC Yakovlev , 68, Leningradskiy prospect, Moscow, 125315, Russia

*e-mail: mdv66@mail.ru
**e-mail: Mikhail.Martirosov@yakovlev.ru
***e-mail: Anton.Homchenko@yakovlev.ru
****e-mail: Elvira.Zanina@yakovlev.ru

Abstract

The widespread use of polymer composite materials to create elements of the power structure of aircraft is due to a number of advantages over classical metal materials. Among them are low weight, high specific strength and rigidity, the ability to set material properties in accordance with the loading pattern of the structure, corrosion resistance, etc. However, the high cost of production, which is not always covered by the weight savings of the structure, and sensitivity to impact influences limit the use of PCM. The impact can be caused, for example, by an explosion of a tire on a chassis made of reinforced rubber. There is a high probability of fragments of tires getting into the elements of the load-bearing structure made of PCM, which can cause their damage and, thereby, a decrease in strength. To prove the compliance of the strength characteristics of load-bearing structures made of PCM with certification requirements, it is necessary to carry out theoretical calculations and experimental work using methods that make it possible to show that the designed structural elements made of PCM fully satisfy the requirements. The influence of the number of fragments of aircraft tire tires affecting a panel of polymer composite material on damage is considered. Damage to the monolayer material is assessed. A technique has been developed for layer-by-layer modeling of polymer composite materials in Simcenter 3D for calculations in LS-Dyna. Programs have been developed to automate the modeling process. Mathematical models of monolayer materials and cohesive joints in LS-Dyna are considered.

Keywords:

aeronautical engineering, finite element method, explicit method, polymer composite material, carbon fiber reinforced plastic, low-velocity impact, LS-Dyna, Simcenter 3D, Simcenter Femap API, damage, cohesive connection

References

  1. Potanin D.V., Samokhin P.A., Zelenyi A.E., Yakovlev I.M., Samokhina E.A. Trudy MAI, 2022, no. 122. URL: https://trudymai.ru/eng/published.php?ID=164180. DOI: 10.34759/trd-2022-122-06
  2. Pobedrya B.E. Mekhanika kompozitsionnykh materialov (Mechanics of composite materials), Moscow, Izd-vo Moskovskogo universiteta, 1984, 336 p.
  3. Brautman L., Krok R. Kompozitsionnye materialy. Vol.5. Razrushenie i ustalost' (Composite materials. Vol.5. Fracture and fatigue), Moscow, Mir, 1978, 483 p.
  4. Goldovskii A.A, Firsanov V.V. Trudy MAI, 2020, no. 111. URL: https://trudymai.ru/eng/published.php?ID=115122. DOI: 10.34759/trd-2020-111-6
  5. Kachanov L.M. Mekhanika polimerov, 1976, no. 5, pp. 918–922.
  6. Hirwani Chetan K., Panda Subrata K., Patle B.K. Theoretical and experimental validation of nonlinear deflection and stress responses of an internally debonded layer structure using different higher-order theories, Acta mechanica, 2018, vol. 229 (8), pp. 3453–3473. DOI: 10.1007/s00707-018-2173-8
  7. Cherepanov G.P. Mekhanika razrusheniya kompozitsionnykh materialov (Mechanics of fracture of composite materials), Moscow, Nauka, 1983, 295 p.
  8. Muc A., Stawiarski A. Identification of damage in composite multilayered cylindrical panels with delaminations, Composite structures, 2012, vol. 94 (5), pp. 1871–1879. DOI: 10.1016/j.compstruct.2011.11.026
  9. Solomonov Yu.S., Georgievskii V.P., Nedbai A.Ya., Andryushin V.A. Metody rascheta tsilindricheskikh obolochek iz kompozitsionnykh materialov (Methods for calculating cylindrical shells made of composite materials), Moscow, Fizmatlit, 2009, 262 p.
  10. Lokteva N.A., Serdyuk D.O., Skopintsev P.D., Fedotenkov G.V. Trudy MAI, 2021, no. 120. URL: https://trudymai.ru/eng/published.php?ID=161423. DOI: 10.34759/trd-2021-120-09
  11. L. Yang, W. Zhanjun, Y. Cao, Y. Yan. Micromechanical modelling and simulation of unidirectional fibre-reinforced composite under shear loading, Journal of reinforced plastics and composites, 2015, vol. 34 (1), pp. 72–83. DOI: 10.1177/0731684414562873
  12. LS-Dyna keyword user’s manual. Vol. II. Material Models. August 2012, Version 971 R6.1.0.
  13. Pyatykhin P.I., Val'ko A.G. Mekhanika kompozitnykh materialov, 1987, no. 5, pp. 936–937.
  14. Bolotin V.V. Mekhanika kompozitsionnykh materialov, 1984, no. 2, pp. 239-256.
  15. Bolotin V.V. Mekhanika kompozitnykh materialov, 1987, no. 3, pp. 423–432.
  16. Kachanov L.M. Mekhanika polimerov, 1976, no. 5, pp. 918–922.
  17. Turon A., Camanho P.P., Costa J., Davila C.G. A damage model for the simulation of delamination in advanced composites under variable-mode loading, Mechanics of Materials, 2006, vol. 38, pp. 1072–1089. DOI: 10.1016/j.mechmat.2005.10.003
  18. Dmitriev V.G., Popova A.R. Trudy MAI, 2023, no. 131. URL: https://trudymai.ru/eng/published.php?ID=175914. DOI: 10.34759/trd-2023-131-08
  19. Aklilu G., Adali S., Bright G. Tensile behaviour of hybrid and non-hybrid polymer composite specimens at elevated temperatures, Engineering Science and Technology, an International Journal, 2019, vol. 23 (4). DOI: 10.1016/j.jestch.2019.10.003
  20. Courant R., Friedrich K., Lewy H. Über die partiellen Differenzeng leichungen der mathematischen Physik, Mathematische Annalen, 1928, vol. 100 (1), pp. 32–74. DOI: 10.1007/BF01448839
  21. Martirosov M.I., Medvedskii A.L., Khomchenko A.V. Mekhanika kompozitsionnykh materialov i konstruktsii, 2020, vol. 26, no. 2, pp. 259–268.
  22. Martirosov M.I., Khomchenko A.V. Trudy MAI, 2022, no. 126. URL: https://trudymai.ru/eng/published.php?ID=168990. DOI: 10.34759/trd-2023-131-08


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход