Estimation of errors of determination of motion parameters of non cooperative orbital object by onboard means of a service space robot in geostationary orbit
Аuthors
*, **,Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia
*e-mail: vka@mil.ru
**e-mail: algoll949@mail.ru
Abstract
The article presents the results of the scientific-and-methodological approach to the possibility of solving the problem of motion parameters autonomous determining of a uncooperative orbital object located in an orbital position in the geostationary orbit. It is necessary for that end to perform measurements by an optoelectronic means and a laser rangefinder, installed on a single platform onboard the space robot. Сomponents of the measured parameters vector are the two angles between the directions to two stars, located in the field of vision of the optoelectronic means and optical axis of the optoelectronic means in line with the object line of vision of the orbital object, and the range of the uncooperated orbital object. The results of the two angles “star–orbital object” measuring and the range to the orbital object are be followed by random uncorrelated errors, which are distributed according to the normal law with zero mathematical expectations and mean-square deviations. The iterative method of least squares with account for the weights of measurements is being applied for processing the measurements results of the optoelectronic device and laser range finder to search for estimation of navigation parameters of the orbital object at the navigation session starting instance.
The results of the study revealed that iterative process of the motion parameters refining of a uncooperative orbital object based on the results of onboard measurements of the optoelectronic device and laser rangefinder of the service space robot was being completed at the eighth iteration. Accuracy degradation of the priori information about motion parameters of a uncooperative orbital object leads to the increase in the number of iterations of the iterative process transition stage. The conducted studies demonstrate that at longitude shift of the position of the service space robot relative to the orbital object, the navigation accuracy of the uncooperative orbital object remains high enough, but inaccuracies in the motion parameters assessment of the uncooperative object motion increase in the direction of the normal to the geostationary orbit plane
Keywords:
uncooperative orbital object, service space robot, geostationary orbit, onboard optical-electronic measuring device, laser range finderReferences
- Vinogradov P.V., Zheleznyakov A.B., Spasskii B.A. Robototekhnika i tekhnicheskaya kibernetika, 2015, no. 4 (9), pp. 3–12.
- Silant'ev S.B., Fominov V.I., Korolev S. Vozdushno-kosmicheskaya sfera, 2016, no. 2 (87), pp. 118–123.
- Ardashov A.A., Arsen'ev V.N., Silant'ev S.B. Trudy Voenno-kosmicheskoi akademii imeni A.F. Mozhaiskogo, 2017, no. 656, pp. 85–91.
- Belonozhko P.P. Vozdushno-kosmicheskaya sfera, 2019, no. 2 (99), pp. 84–97.
- Kat'kalov V.B. Vozdushno-kosmicheskaya sfera, 2020, no. 2 (103), pp. 72–80.
- Salopakhin S.K., Petrashevskaya M.S. Dinamika sistem, mekhanizmov i mashin, 2014, no. 2, pp. 261–263.
- Dalyaev I.Yu., Kuznetsova V.M., Shardyko I.V. Robototekhnika i tekhnicheskaya kibernetika, 2015, no. 3 (8), pp. 27–29.
- Ellery A., Kreisel J., Sommer B. The case for robotic on-orbit servicing of spacecraft: Spacecraft reliability is a myth, Acta Astronautica, 2008, pp. 632-648. DOI: 10.1016/j.actaastro.2008.01.042
- Flores-Abad A., Ma O., Pham K., Ulrich S. A review of space robotics technologies for on-orbit servicing, Progress in Aerospace Sciences, 2014, pp.1-26. DOI: 10.1016/j.paerosci.2014.03.002
- Valaitite A.A., Nikitin D.P., Sadovskaya E.V. Trudy MAI, 2014, no. 77. URL: https://trudymai.ru/eng/published.php?ID=53172
- Mishin A.Yu., Frolova O.A., Isaev Yu.K., Egorov A.V. Trudy MAI, 2010, no. 38. URL: https://trudymai.ru/eng/published.php?ID=14161
- Kurshin A.V. Trudy MAI, 2013, no. 66. URL: https://trudymai.ru/eng/published.php?ID=40799
- Konin V.V., Shishkov F.A. Izvestiya vysshikh uchebnykh zavedenii. Radioelektronika, 2016, no. 12 (654), pp. 43–49.
- Anshakov G.P., Golyakov A.D., Petrishchev V.F., Fursov V.A. Avtonomnaya navigatsiya kosmicheskikh apparatov (Autonomous navigation of spacecraft), Samara, Gosudarstvennyi nauchno-proizvodstvennyi raketno-kosmicheskii tsentr «TsSKB-Progress», 2011, 486 p.
- Kruzhkov D.M. Trudy MAI, 2012, no. 51. URL: https://trudymai.ru/eng/published.php?ID=29146
- Peshek honov V.G. Giroskopiya i navigatsiya, 2022, vol. 30, no. 1 (116), pp. 3–11.
- Golyakov A.D., Richnyak A.I., Fominov V.I. Trudy MAI, 2022, no. 126. URL: https://trudymai.ru/eng/published.php?ID=169009. DOI: 10.34759/trd-2022-126-23
- Porfir'ev L.F., Smirnov V.V., Kuznetsov V.I. Analiticheskie otsenki tochnosti avtonomnykh metodov opredeleniya orbit (Analytical evaluation of the accuracy of autonomous orbits determination method), Moscow, Mashinostroenie, 1987, 279 p.
- Starovoitov E.I., Zubov N.E. Vestnik MGTU im. N.E. Baumana. Ser. Priborostroenie. 2016, no. 4, pp. 115–128.
- Avanesov G.A., Krasil'nikov V.A., Nikitin A.A., Sazonov V.V. Preprinty IPM im. M.V. Keldysha, 2010, no. 74, 37 p.
- Kalman R.E. Trudy 1–go mezhdunarodnogo kongressa IFAK, Moscow, AN SSSR, 1961, vol. 2, pp. 521–546.
Download