Design of lattice structures to protect quick-release connection removal devices from gas dynamic loads during launch of the space rocket


Аuthors

Chupina E. S.1*, Yaroslavtseva M. M.1**, Abdurashidov T. O.2***

1. JSC "CENKI" - Research Institute of the SK, Moscow, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: 2qchupina.yelizaveta@mail.ru
**e-mail: lostgalaxy74@yandex.ru
***e-mail: rocket37@yandex.ru

Abstract

To protect the structural elements from the incoming flow, special protective grating are being proposed at the missile takeoff. The presented article considers the effect of gratings on the gas-dynamic flow parameters changing while its passage through the grating cells.
The purpose of the work consists in selecting a grating design ensuring the gas dynamic loads reduction on the equipment installed on the cable-and-filling tower. The article presents the gratings design options with various permeability coefficients.
The authors performed numerical modeling employing grid flow computing methods. A block-structured model consisted of rectangular elements was built based on the 3D model in a program realizing a numerical method for the gas flow computing. Several computational cases for different velocities and temperatures of the incoming flow were considered while modeling.
Information on the parameters of the flow passing through the grating changes was read off at control points at various distances from the grid. The dependences of pressure losses on the flow mode through the gratings of various design configurations were obtained according to the computational results. The authors proposed a bridge-type structure allowing reducing gas dynamic loads on the quick-disconnect devices to the acceptable levels.
The results of gas jets interaction with the grating flooring computations are the initial data for further strength analysis of the grating structures.
The article presents a multidisciplinary approach to determining layout of the protective grating structure. The issues of the product strength under cyclic gas dynamic impact on the grating are considered. A diagram of the grating element cyclic deformation under the cyclic gas dynamic impact was obtained.
A bridge frame for the detachable joints protection by the earlier proposed gratings was developed employing the complex modeling results. This design demonstrates the best resistance to the gas dynamic effects than a solid flooring. The results of the presented work may be employed in the design of grating structures to protect any other object of ground-based space infrastructure exposed to gas dynamic effects.

Keywords:

gas dynamics, supersonic jets, numerical modeling, protective gratings, strength, construction, computer modeling

References

  1. Ushakov R.E., Fomin K.I., Gostinov D.A. XV Vserossiiskaya konferentsiya molodykh uchenykh i spetsialistov «Budushchee mashinostroeniya Rossii»: sbornik dokladov, Moscow, Izdatel'stvo MGTU im. N.E. Baumana, 2023, pp. 19-26.
  2. Eremeevskii E.A., Chornaya A.G., Artyukh R.L. Dinamika sistem, mekhanizmov i mashin, 2016, vol. 1, no. 1, pp. 163-167.
  3. Abdurashidov T.O., Osipov A.V., Korchagova V.N., Kraposhin M.V., Smirnova E.V., Strizhak S.V. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2017, no. 4, pp. 7-20.
  4. Biryukov G.P., But A.B., Khotulev V.A., Fadeev A.S. Gazodinamika startovykh kompleksov (Gas dynamics of launch complexes), Moscow, Restart, 2012, 364 p.
  5. Guo X. et al. Effect of polymer drag reducer on rheological properties of rocket kerosene solutions, Materials, 2022, vol. 15, no. 9, pp. 3343. DOI: 10.3390/ma15093343
  6. Kudimov N.F., Safronov A.V., Tret'yakova O.N. Prikladnye zadachi gazodinamiki i teploobmena v energeticheskikh ustanovkakh raketnoi tekhniki (Applied problems of gas dynamics and heat transfer in power plants of rocket technology), Moscow, Izd-vo MAI, 2014, 167 p.
  7. Abdurashidov T.O., But A.B., Chupina E.S. Trudy MAI, 2023, no. 130. URL: https://trudymai.ru/eng/published.php?ID=174624. DOI: 10.34759/trd-2023-130-24
  8. Antipova M.S., Dyad'kin A.A., Zapryagaev V.I., Krylov A.N. Kosmicheskaya tekhnika i tekhnologii, 2016, no. 1 (12), pp. 5-11.
  9. Zhluktov S.V., Aksenov A.A., Kuranosov N.S. Komp'yuternye issledovaniya i modelirovanie, 2023, vol. 15, no. 4, pp. 805-825. DOI: 10.20537/2076-7633-2023-15-4-805-825
  10. Kravchuk M.O., Kudimov N.F., Safronov A.V. Trudy MAI, 2015, no. 82. URL: https://trudymai.ru/eng/published.php?ID=585363
  11. Snazin A.A., Shevchenko A.V., Panfilov E.B. Trudy MAI, 2022, no. 125. URL: https://trudymai.ru/eng/published.php?ID=168165. DOI: 10.34759/trd-2022-125-06
  12. Jiang, C., Han, T., Gao, Z., & Lee, C.-H. A review of impinging jets during rocket launching, Progress in Aerospace Sciences, 2019, vol. 109, pp. 100547. DOI: 10.1016/j.paerosci.2019
  13. GOST R 51282-99. Oborudovanie tekhnologicheskoe startovykh i tekhnicheskikh kompleksov raketno-kosmicheskikh kompleksov (GOST R 51282-99. Technological equipment for launch and technical complexes of rocket and space complexes), Moscow, Izdatel'stvo standartov, 1999, 36 p.
  14. Golovchinskii V.O., Golovchinskaya N.V., Fedorov A.V. Trudy Voenno-kosmicheskoi akademii imeni A.F.Mozhaiskogo, 2021, no. 677, pp. 210-217.
  15. Gula D.N., Golovchinskaya N.V., Mirgorodskii A.N., Motorin V.M. Aktual'nye problemy voenno-nauchnykh issledovanii, 2020, no. 10, pp. 93-97.
  16. Zverev V.A., Ul'yanenkov A.V., Yazykov A.V. Mashinostroenie i komp'yuternye tekhnologii, 2014, no. 9, pp. 119-131.
  17. Salov P.N. Trudy Voenno-kosmicheskoi akademii imeni A.F. Mozhaiskogo, 2011, no. 633, pp. 73-77.
  18. Ul'yanenkov A.V., Ivanov M.F. Inzhenernyi vestnik, 2014, no. 12, pp. 14.
  19. Yaroslavtseva M.M. XLVII Akademicheskie chteniya po kosmonavtike – 2023, posvyashchennyi pamyati akademika S.P. Koroleva i drugikh vydayushchikhsya otechestvennykh uchenykh — pionerov osvoeniya kosmicheskogo prostranstva): sbornik tezisov. Moscow, MGTU imeni N.E. Baumana, 2023, vol. 2, pp. 220-221.
  20. Yaroslavtseva M.M. Mezhdunarodnaya molodezhnaya nauchnaya konferentsiya «XLVII Gagarinskie chteniya - 2021»: sbornik tezisov. Moscow, Izd-vo «Pero», 2021, pp. 834.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход