Methodological aspects of modeling stochastic vibrodynamic effects


Аuthors

Gerasimchuk V. V.*, Efanov V. V., Kuznetsov D. A.**, Telepnev P. P.***

Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia

*e-mail: gerasimchuk@laspace.ru
**e-mail: kuznetsovda@laspace.ru
***e-mail: telepnev@laspace.ru

Abstract

A methodological apparatus for the formation of a time series of random broadband exposure corresponding to the requirements set in the form of spectral densities of vibration accelerations for various frequency ranges is presented. The operation of the rocket engine at the expiration of the gas jet causes stochastic vibrations of the structure in the broadband range, which can negatively affect the correct operation of the spacecraft equipment, which actualizes the task of studying the vibration background of sensitive, low-vibration-resistant equipment at the early stages of design. The simulation model of such a stochastic system is studied using the method of statistical computer modeling, using the limit theorems of probabilities as a theoretical basis, and the vibrodynamic effect of the spacecraft correction engine is considered as the implementation of an ergodic and stationary random function. Using the inverse Fourier transform for the spectral density graph, the corresponding correlation function was determined and a variant of the input dynamic effect was formed to simulate the vibration background of the structure. The problem of finding a forming filter as a linear system forming a random function from "white" noise is solved. A family of correlation functions is considered as a mathematical model for approximating the functions of stochastic vibrodynamic action. The forming filter of a stationary random function is reduced to a forming filter in the form of a system of second-order differential equations. When solving differential equations on a computer, the high-order equation was replaced by a system of first-order equations and numerical integration by the Euler method was performed. The generated random broadband vibrodynamic effect is investigated. It is established that its spectrum corresponds to the initial requirements set in the form of spectral densities of vibration accelerations for various frequency ranges. The discrepancy for the RMS values of vibration accelerations was 13-21%, depending on the frequency band. The considered aspects of modeling stochastic vibrodynamic effects can make it possible to correctly form a time series having characteristics that quantitatively and qualitatively correspond to the characteristics of the specified spectral density of random oscillations caused by the operation of the correction engine, which will allow us to investigate the effect of broadband vibration on sensitive and low-vibration-resistant spacecraft equipment at early design stages.

Keywords:

spacecraft, spectral density, correlation function, stochastic vibration, vibration acceleration

References

  1. Efanov V.V., Telepnev P.P., Kuznetsov D.A. Interplanetary stations with precision orientation accuracy: requirements for providing complex vibration protection. Astronomicheskii vestnik. 2019. V. 53, No. 6. P. 475-480. (In Russ.)
  2. Liberman M.Yu. On modeling the processes of formation of launch loads that have a dynamic effect on the spacecraft. Voprosy elektromekhaniki. 2013. V. 136, P. 19-30. (In Russ.)
  3. Moisheev A.A., Mordyga Yu.O. Sravnitel'nyi analiz vliyaniya osnovnykh bortovykh istochnikov vozmushchenii KA na «vibratsionnyi smaz» izobrazheniya kosmicheskogo teleskopa (Comparative analysis of the impact of major on-Board sources of disturbances KA na "vibrating blur" image space telescope). Moscow: NPO im. S.A. Lavochkina Publ., 1998.
  4. Zhukov Yu.A., Korotkov E.B., Matveev S.A. et al. Vibration protection of precision spacecraft equipment from internal sources of disturbances. Kosmicheskie apparaty i tekhnologii. 2021. V. 5, No. 4. P. 217-226. (In Russ.). DOI: 10.26732/j.st.2021.4.05
  5. Gerasimchuk V.V., Zhiryakov A.V., Kuznetsov D.A., Telepnev P.P. Simulation of the vibration background of the spacecraft. Trudy MAI. 2023. No. 131. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID= 175908. DOI: 10.34759/trd-2023-131-02
  6. Mashinostroenie. Entsiklopediya. Vol. IV-22. Raketno-kosmicheskaya tekhnika. (Mechanical engineering. Encyclopedia. Vol. IV-22. Rocket and space technology). Moscow: Mashinostroenie Publ., 2014. book 2. part II. 548 p.
  7. Shimkovich D.G. Raschet konstruktsii v MSC.visualNastran dlya Windows (Calculation of structures in MSC.visualNastran for Windows). Moscow: DMK Press Publ., 2004. 704 p.
  8. Ageenko Yu.I., Pegin I.V., Chesnokov D.V. Correction thrust of the engine 50 N landing of spacecraft "Luna-Resource". Samarskogo gosudarstvennogo aerokosmicheskogo universiteta. 2014. No. 5 (47). Ch. 1. P. 112-117. (In Russ.)
  9. Frolov K.V. Vibratsii v tekhnike: Spravochnik v 6-ti tomakh. Zashchita ot vibratsii i udarov (Vibrations in technology: A handbook in 6 volumes. Protection against vibrations and shocks). Moscow: Mashinostroenie Publ., 1985. vol. 6. 456 p.
  10. Telepnev P.P., Zhirykov A.V., Gerasimchuk V.V. Calculating the Structural Vibration Loading Applied to Spacecraft Using Dynamic Analysis. Solar System Research. 2021. V. 55, No. 7. DOI: 10.1134/S0038094621070200
  11. Zanin K.A., Moskatin'ev I.V., Demidov A.Yu. Development of generalized resolution criteria for various types of cosymic surveillance systems. Vestnik NPO im. S.A. Lavochkina. 2023. No. 1. P. 12-20. (In Russ.)
  12. Telepnev P.P., Kuznetsov D.A. Osnovy proektirovaniya vibrozashchity kosmicheskikh apparatov (Fundamentals of designing vibration protection of spacecraft: textbook). Moscow: Izd-vo MGTU im. N.E.Baumana Publ., 2019. 102 p.
  13. Demenko O.G., Biryukov A.S. On the issue of determining the parameters of an equivalent shock pulse during spacecraft tests. Vestnik NPO im. S.A. Lavochkina. 2023. No. 2. P. 70-77. (In Russ.)
  14. Beiker R. Vvedenie v teoriyu vibroispytanii. LING DYNAMIC SYSTEMS (Introduction to the theory of vibration tests. LING DYNAMIC SYSTEMS). 1994. 44 p.
  15. Kheilen V., Lammens S., Sas P. Modal'nyi analiz: teoriya i ispytaniya (Modal analysis: theory and tests). Moscow: Novatest Publ., 2010. 319 p.
  16. Semenov M.E., Solov'ev A.M., Popov M.A. Stabilization of unstable objects: coupled oscillators. Trudy MAI. 2017. No. 93. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=80231
  17. Gritsenko D.V., Nuzhdov Yu.N., Shapovalov R.V. Modelirovanie dorozhnogo vozdeistviya na transportnye sredstva (Modeling of road impact on vehicles). Moscow: MO SSSR Publ., 1991. 121 p.
  18. Eliseev A.V., Kuznetsov N.K., Eliseev S.V. Frequency energy function in the assessment of dynamic states of technical objects. Trudy MAI. 2021. No. 118. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=158213. DOI: 10.34759/trd-2021-118-04
  19. Gardiner K.V. Stokhasticheskie metody v estestvennykh naukakh (Stochastic metods in the natural sciences). Moscow: Mir Publ., 1986. 538 p.
  20. Venttsel' E.S., Ovcharov L.A. Teoriya veroyatnostei i ee inzhenernye prilozhniya (Probability theory and its engineering applications: a textbook). Moscow: Yustitsiya Publ., 2018. 480 p.
  21. Ivanov A.I., Tarasov D.V., Ermakova A.I. Programmatic reproduction of correlations in small samples in the statistical analysis of biometric data and market data in the space of values of the empirical Hearst indicator. Trudy MAI. 2024. No. 137. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=181892
  22. Mashinostroenie. Entsiklopediya. T. 1-3. Dinamika i prochnost' mashin. Teoriya mekhanizmov i mashin / Pod red. K.S. Kolesnikova (Mechanical engineering. Encyclopedia. vol. 1-3. Dynamics and strength of machines. Theory of mechanisms and machines / Edited by K.S. Kolesnikov). Moscow: Mashinostroenie Publ., 1994. Book 1. 534 p.
  23. Zorin A.V., Zorin V.A., Fedotkin M.A. Modelirovanie sluchainykh velichin i proverka gipotez o vide raspredeleniya (Modeling of random variables and testing hypotheses about the type of distribution: An educational and methodological guide). Nizhnii Novgorod: Nizhegorodskii universitet Publ., 2017. 19 p.
  24. Venttsel' E.S. Teoriya veroyatnostei (Theory of probability). Moscow: Nauka Publ., 1969. 576 p.
  25. Il'in V.A., Sadovnichii V.A., Sendov Bl.Kh. Matematicheskii analiz (Mathematical analysis). Moscow: Izd-vo Moskovskogo universiteta Publ., 2004. 654 p.
  26. Pontryagin L.S. Obyknovennye differentsial'nye uravneniya (Ordinary differential equations). Moscow: Nauka Publ., 1974. 331 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход