Construction of a simulation model of a deweighting system using the MATALB Simulink environment


Аuthors

Maksimov V. N.*, Kondratyev K. V.**, Matyukha N. V.***, Matyukha N. V.****

Compani «Information satellite systems of academician M.F. Reshetnev», 52, Lenin str., Zheleznogorsk, Krasnoyarsk region, 662972, Russia

*e-mail: 1928d@mail.ru
**e-mail: kondratevkv@iss-reshetnev.ru
***e-mail: 1528d@mail.ru
****e-mail: maksimovpn@iss-reshetnev.ru

Abstract

In this work, a simulation model of an active dewatering system was developed, created in the MATLAB Simulink environment, an active dewatering system is necessary for the successful conduct of modal tests of aerospace equipment. The constructed model describes in detail the operation of a system based on the use of magnetic energy. The main elements of the system are a coil, a magnet, a steel body, a steel disc, the interaction of which ensures the efficient and stable operation of the system. A permanent magnet creates a magnetic field, which, interacting with a copper coil, allows the generation of electromagnetic forces. These forces play a key role in controlling the movement of the coil and its position in space, which makes this system capable of adjusting the position of the object. The main purpose of the model development was to analyze the behavior of the system depending on the position of the coil. This is important to create an accurate and reliable simulation model that reflects the real dynamics of the system in various operating conditions. The results allowed for a detailed analysis of the transition process in the system. As part of the analysis such important characteristics as the time of the overshoot process, the amount of overshoot and the integral stability of the system were considered. The data obtained play an important role for further improvement of the dewatering system, as well as the development of management methods that will ensure its reliable operation in real conditions.

Keywords:

Ampere force, modeling, MATLAB Simulink, electromagnetic field, transient process, active weight-loss systems, mathematical model

References

  1. Ivanov A.V., Zommer S.A. Analysis of the umbrella-type reflector opening process on a stand with an active gravity compensation system. Kosmicheskie apparaty i tekhnologii. 2021. V. 5, No. 4 (38). P. 208-216. (In Russ.). DOI: 10.26732/j.st.2021.4.04
  2. Belyaev A.S., Filipas A.A., Tsavnin A.V., Tyryshkin A.V. Methodology for calculating the de-weighting system of large-sized transformable elements of space vehicles for ground tests. Sibirskii aerokosmicheskii zhurnal. 2021. No. 1. P. 106-120. (In Russ.). DOI: 10.31772/2712-8970-2021-22-1-106-120
  3. Belyaev A.S., Filipas A.A., Kurganov V.V., Poberezkin N.I. Four-rope suspension system with force vector control. Elektrotekhnicheskie i informatsionnye kompleksy i sistemy. 2022. V. 18, No. 2. P. 98-106. (In Russ.). DOI: 10.17122/1999-5458-2022-18-2-98-106
  4. Gaidukova A.O., Belyanin N.A. Overviewing offloading (zero-g) system. Reshetnevskie chteniya. 2016. V. 1, P. 93-95. (In Russ.)
  5. Schulte Wethof B., Maas. J. Design of an Electromagnetic Linear Drive with Permanent Magnetic Weight Compensation. Actuators. 2024. V. 13, No. 3. P. 107. DOI: 10.3390/act13030107
  6. Janssen J.L.G., Paulides J.J.H., Lomonova E.A., Delinchant B., Yonnet J.P. Design study on a magnetic gravity compensator with unequal magnet arrays. Mechatronics. 2013. V. 23, P. 197–203. DOI: 10.1016/j.mechatronics.2012.08.003
  7. Pechhacker A., Wertjanz D., Csencsics E., Schitter G. Integrated electromagnetic actuator with adaptable zero power gravity compensation. IEEE Transactions on Industrial Electronics. 2024. V. 71, No. 5. P. 5055-5062. DOI: 10.1109/TIE.2023.3288176
  8. Lysenkov Ya.A., Ivanov N.N. Building a simulation model of a solenoid using the MatLab Simulink environment. Vestnik nauki. 2023. V. 4, No. 5 (62). P. 806-814. (In Russ.)
  9. Usol'tsev A.A. Obshchaya elektrotekhnika (General electrical engineering). Saint Petersburg: GU ITMO Publ., 2009. 301 p.
  10. Rollin. J.Parker. Advances in Permanent Magnetism. By John Wiley & Sons, 1990. 352 p.
  11. Lifanov V.A. Raschet elektricheskikh mashin maloi moshchnosti s vozbuzhdeniem ot postoyannykh magnitov (Calculation of low-power electric machines with excitation from permanent magnets). Chelyabinsk: Izdatel'skii tsentr YuUrGU Publ., 2010. 164 p.
  12. Al'tman A.B., Vernikovskii E.E., Gerberg A.N., ets. Postoyannye magnity: spravochnik (Permanent magnets: handbook). Moscow: Izd-vo «Energiya» Publ., 1980. 486 p.
  13. Arnol'd R.R. Raschet i proektirovanie magnitnykh sistem s postoyannymi magnitami (Calculation and design of magnetic systems with permanent magnets). Moscow: Izd-vo «Energiya» Publ., 1969. 94 p.
  14. Brezak D., Kovač A., Firak M. Matlab/simulink simulation of low-pressure pem electrolyzer stack. International Journal of Hydrogen Energy. 2023. V. 48, No. 16. P. 6158-6173. DOI: 10.1016/j.ijhydene.2022.03.092
  15. Taha Z., Aydın K., Arafah D., Sughayyer M. Comparative simulation analysis of electric vehicle powertrains with different configurations using AVL cruise and MATLAB Simulink. New Energy Exploitation and Application. 2024. V. 3, No. 1. P. 171-184. DOI: 10.54963/neea.v3i1.276
  16. Naz F. Closed loop buck & boost converter mathematical modeling, analysis and simulation using MATLAB. International Journal of Engineering and Advanced Technology (IJEAT). 2021. V. 10, No. 4, P. 263-271. DOI: 10.35940/ijeat.D2525.0410421
  17. Krasinskii A.Ya., Il'ina A.N., Krasinskaya E.M., Rukavishnikova A.S. Mathematical and computer modeling of rover with elastic suspension longitudinal dynamics. Trudy MAI. 2017. No. 95. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=84612
  18. Gavva L.M. Strain-stress parametric analysis of structurally anisotropic panels of composite materials with account for manufacturing technology in MALAB. 2017. No. 93. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=80504
  19. Fadin D.A. Realizing computational algorithms on integer microprocessor systems using MATLAB Simulink. Trudy MAI. 2015. No. 80. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=57021
  20. Abdali Lait Mokhammed Abdali, Al'-Maliki Muataz Nadzhim Kassim, Kuvshinov V.V., Kuznetsov P.N., Morozova N.V. Mathematical technique modeling using the algorithm for control of the maximum power point for a photoelectric system. Trudy MAI. 2023. No. 130. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=174619. DOI: 10.34759/trd-2023-130-20
  21. Maksimov V.N., Marinin D.A., Maksimov P.N., Nazar'ko A.V. Development of linear bearing equipment for modal testing of low-frequency weakly damped spacecraft structures. Dinamika i vibroakustika. 2024. V. 10, No. 2. P. 59 – 69. (In Russ.). DOI: 10.18287/2409-4579-2024-10-2-59-69


Download

mai.ru — informational site MAI

Copyright © 2000-2025 by MAI

Вход