Mathematical technique modeling using the algorithm for control of the maximum power point for a photoelectric system


DOI: 10.34759/trd-2023-130-20

Аuthors

AbdAli L. M.1*, Al-Maliki M. N.1**, Kuvshinov V. V.1***, Kuznetsov P. N.1****, Morozova N. V.2*****

1. Sevastopol State Technical University, Sevastopol, Russia
2. Moscow State University of Technology "STANKIN", 1, Vadkovsky lane, Moscow, 127994, Russia

*e-mail: laith_2210@yahoo.com
**e-mail: muatazn@yandex.com
***e-mail: кuvshinov.vladimir@gmail.com
****e-mail: pnkuznetsov@sevsu.ru
*****e-mail: innat.m@mail.ru

Abstract

Substantial number of solar electric power generating systems, including those associated with aerospace technology, is being employed to ensure various equipment operation. These systems are being applied on space stations and off-line ground-based facilities, for power supplying for stationary operating complexes, as well as for supplying energy to various industries and consumers.

One of the basic elements of a solar photovoltaic station is automatic system of its power characteristics control. The presented article studied the point of maximum power control system for the off-line power generating installation based on silicon photoelectric panels. One of this work tasks consisted in operation reliability enhancing of the solar system because of the climatic factors affecting it and associate this system operation with the typical requirement of electric energy through the artificial intelligence application. As long as the alternative renewal energy forms are based on natural resources permanently replenished, it is assumed that they are of infinite storage of useful power. The proposed arithmetic model being is an important component of the complex study of photoelectric systems. The proposed arithmetic model is an important component of the comprehensive study of photoelectric systems. The programming environment, which includes numerous models for renewable energy systems, allows analyzing photoelectric installation operation regularities. It is possible to build a plurality of models for the renewable energy systems meant for modeling and analyzing photoelectric installations operation with MATLAB/Simulink. Due to the instability of external factors, such as solar radiation and atmospheric temperature, or unpredictability of possible instances, such as solar panels overheating, it is necessary to employ a maximum power point tracking (MPPT) algorithm for the systems of semiconductor photo converters. The proposed control algorithm application allows significant efficiency increase of the energy converted by the solar station of electric energy, as well as reliability enhancing of the main and auxiliary equipment of photoelectric systems, which may be employed for supplying the off-line objects and operation for the energy system.

Keywords:

photovoltaic panel, P&O algorithm, DC/DC converter, solar power plant, MATLAB/Simulink software

References

  1. Shah T.R., Ali H.M. Application of hybrid nanofluids in solar energy, practical limitations and challenges: a critical review, Solar Energy, 2019, vol. 183, pp. 173-203. DOI: 10.1016/j.solener.2019.03.012
  2. Abo-Elyousr F.K., Abdelshafy A.M., Abdelaziz A.Y. MPPT-Based article Swarm and Cuckoo Search Algorithms for PV Systems: In book: Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems, Springer, Cham, Switzerland, 2020, pp. 379–400.
  3. Abdali L.M., Issa Kh.A., Al’-Maliki M.N., Kuvshinov V.V., Bekirov E.A. Stroitel’stvo i tekhnogennaya bezopasnost’, 2022, no. 25 (77), pp. 75-85.
  4. Zhang Q., Ning Xu., Ye Z. MMPT control method for photovoltaic power supply based on improved variable-step hill-climbing method, Electric Engineering, 2018, vol. 2, pp. 55-57.
  5. Yadav P.K., Thirumaliah S., Haritha G. Comparison of MPPT Algorithms for DC-DC Converters Based PV Systems, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2012, vol. 1, issue 1.
  6. Liu H.D., Lin C.H., Pai K.J., Lin Y.L. A novel photovoltaic system control strategies for improving hill climbing algorithm efficiencies in consideration of radian and load effect, Energy Conversion and Management, 2018, vol. 165, pp. 815-826. DOI: 10.1016/j.enconman.2018.03.081
  7. Cheboxarov V.V. An Offshore Wind-Power-Based Water Desalination Complex as a Response to an Emergency in Water Supply to Northern Crimea, Applied Solar Energy, 2019, vol. 55, no. 4, pp. 260-264. URL: https://doi.org/10.3103/S0003701X19040030
  8. Jumpasri N, Pinsuntia K, Woranetsuttikul K, Nilsakorn T, Khanngern W. Improved particle swarm optimization algorithm using average model on MPPT for partial shading in PV array // International electronics engineering congress, 2014. pp 1–4. DOI: 10.1109/iEECON.2014.6925856
  9. Issa Kh.A., Abdali L.M., Yakimovich B.A., Kuvshinov V.V., Morozova N.V., Fedotikova M.V. Trudy MAI, 2023, no. 128. URL: https://trudymai.ru/eng/published.php?ID=171405. DOI: 10.34759/trd-2023-128-17
  10. Idris I., Robian M.S., Mahamad A.K., Saon S. Arduino based maximum power point tracking for photovoltaic system, ARPN Journal Engineering and Applied Sciences, 2016, vol. 11 (14), pp. 8805–8809.
  11. Abdali L.M., Al’-Maliki M.N., Ali K.A., Yakimovich B.A., Korovkin N.V., Kuvshinov V.V., Solomennikova S.I. Vestnik IzhGTU imeni M. T. Kalashnikova, 2022, vol. 25, no. 3, pp. 82-91. DOI: 10.22213/2413-1172-2022-3-82-91
  12. Ahmed Mohmmed H., Anssari M.O.H. Electricity generation by using a hybrid system (photovoltaic and fuel cell), Journal of Engineering and Applied Sciences, 2019, no. 14, pp. 4414-4418. DOI:10.3923/jeasci.2019.4414.4418
  13. Ismail B., Taib S., Saad A.R.M. et al. Development of a single phase SPWM microcontroller-based inverter, Power and Energy Conference, PECon ’06, IEEE International, 2006, pp. 437–440. DOI:10.1109/PECON.2006.346691
  14. Layth M. Abd Ali, L.M. Ali, Q.A., Klačková I., Issa H.A., Yakimovich, B.A., Kuvshimov V.V. Developing a thermal design for steam power plants by using concentrating solar power technologies for a clean environment, Acta Montanistica Slovaca, 2021, vol. 26 (4), pp. 773-783. DOI: 10.46544/AMS.v26i4.14
  15. Jiang L.L., Maskell D.L., Patra J.C. A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions, Energy Build, 2013, vol. 58, pp. 227–236. DOI: 10.1016/j.enbuild.2012.12.001
  16. Abd Ali L.M., Al-Rufaee F.M., Kuvshinov V.V. et al. Study of Hybrid Wind—Solar Systems for the Iraq Energy Complex, Applied Solar Energy, 2020, vol. 56, no. 4, pp. 284–290. DOI: 10.3103/S0003701X20040027
  17. Aouchiche N., Aitcheikh M.S., Becherif M., Ebrahim M.A. AI-based global MPPT for partial shaded grid connected PV plant via MFO approach, Solar Energy, 2018, vol. 171, pp. 593–603. DOI: 10.1016/j.solener.2018.06.109
  18. Pathy S., Subramani C., Sridhar R., Thentral T., Padmanaban S. Nature-inspired MPPT algorithms for partially shaded PV systems: A comparative study, Energies, 2019, vol. 12, pp. 1451. DOI: 10.3390/en12081451
  19. Samosir A.S., Yatim A.H.M. Danymic evolution control for synchronous buck dc-dc converter: Theory, model and simulation, Simulation Modelling Practice and Theory, 2010, vol. 18, pp. 663-676. DOI: 10.1016/j.simpat.2010.01.010
  20. Sanjay Gandhi, S. Sam Chelladurai, Dr. D. Senthil Kumaran. Process Optimization for Biodiesel Synthesis from Jatropha Curcas Oil, Distributed Generation and Alternative Energy Journal, 2011, vol. 23, no. 4, pp. 6-16. DOI: 10.1080/21563306.2011.10462201
  21. Teplikova V.I., Sentsov A.A., Nenashev V.A., Polyakov V.B. Trudy MAI, 2022, no. 125. URL: https://trudymai.ru/eng/published.php?ID=168189. DOI: 10.34759/trd-2022-125-17
  22. Abdali L.M., Al’-Maliki M.N., Al’ Bairmani A.G., Yakimovich B.A., Syaktereva V.V., Kuvshinov V.V. [Analysis and selection of the optimal performance control method for solar cell dc converters]. Intellektual’nye sistemy v proizvodstve. 2023, vol. 21, no. 1, pp. 125-137 (in Russ.). DOI: 22213/2410-9304-2023-1-125-137.
  23. Belkaid A., Colak I., Kayisli K. Implementation of a modified P&O-TMMT algorithm adapted for varying solar radiation conditions, Electrical Engineering, 2017, vol. 99, pp. 839–846. DOI: 10.1007/s00202-016-0457-3
  24. Ibragimov D.N., Berendakova A.V. Trudy MAI, 2022, no. 126. URL: https://trudymai.ru/eng/published.php?ID=169003 DOI: 10.34759/trd-2022-126-17
  25. Jaypalsinh Chauhan. Comparison of MPPT Algorithms for DC-DC Converters Based Photovoltaic Systems, Conference Energy Efficient Technologies for Sustainability, 2013. DOI: 10.1109/ICEETS.2013.6533431
  26. King D.L. Photovoltaic Module and Array Performance Characterization Methods for All System Operating Conditions, AIP Conference Proceedings, 1997, vol. 394, pp. 347–368. DOI: 10.1063/1.52852
  27. Himri Y., Malik A.S., Stambouli A.B. et al. Review and use of the Algerian renewable energy for sustainable development, Renewable and Sustainable Energy Reviews, 2009, vol. 13, pp. 1584–1591. DOI: 10.1016/j.rser.2008.09.007
  28. Abdali L.M., Yakimovich B.A., Syaktereva V.V., Kuvshinov V.V., Morozova N.V. Trudy MAI, 2023, no. 129. URL: https://trudymai.ru/eng/published.php?ID=173037. DOI: 10.34759/trd-2023-129-24
  29. Volkov A.S. Trudy MAI, 2023, no. 128. URL: https://trudymai.ru/eng/published.php?ID=171396. DOI: 10.34759/trd-2023-128-12
  30. Sokolov N.L. Trudy MAI, 2016, no. 87. URL: https://trudymai.ru/eng/published.php?ID=69701

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход