On a device for automated sample compression synchronized with x-ray computed tomography imaging


Аuthors

Kharin N. V.

Kazan Federal University, 18, Kremlyovskaya St., 420008, Russia

e-mail: nik1314@mail.ru

Abstract

Non-destructive testing methods are widely employed to analyze complexly structured materials and constructions, with X-ray computed tomography (CT) standing out due to its ability to generate a digital twin of the specimen as a three-dimensional model. This approach facilitates the detection of manufacturing defects and deviations from design specifications. However, during operation, certain defects in heterogeneous materials may develop, and evaluating the risk areas for such defects using CT alone is challenging without external intervention. To overcome this limitation, a specialized device is being developed that enables mechanical testing to be performed directly inside the CT chamber. The objective of this study is to develop and describe a device that ensures reproducible application of load to the specimens during CT scanning. In this research, a loading system is proposed that allows for consistent uniaxial compression tests within the CT environment. Furthermore, a novel method for tracking optical density throughout the specimen is introduced and validated to assess segmentation accuracy. Experimental results demonstrated that the force discrepancy between the developed device and a universal testing machine did not exceed 2%, while the differences in the measured values obtained by the device versus the universal testing machine remained within 3%. Additionally, to verify the optical density tracking method, data from previously published studies were employed, showing that the median segmentation error did not exceed 5%. In conclusion, the proposed device facilitates simultaneous mechanical testing and CT scanning, thereby providing a comprehensive analysis of the mechanical properties of the samples. The study also discusses potential improvements in both the device design and its software to further expand its functionality, ultimately paving the way for more integrated and precise evaluations of structural materials in various applications.

Keywords:

X-ray computer tomography, automated device, heterogeneous structures

References

  1. Aisha KH., Gazanfar Ali M., Tarik M.R.KH. et al. Control and determination of parameters of welded low-carbon steel E 6013 using ultrasonic testing and Hilbert-Huang transform. Defektoskopiya. 2021. No. 5. P. 64-70. (In Russ.). DOI: 10.31857/S0130308221050080
  2. Chavazas M.-L. et al. Impact of relative humidity variations on Carrara marble mechanical properties investigated by nonlinear resonant ultrasound spectroscopy. Construction and Building Materials. 2024. Vol. 431, P. 136529. DOI: 10.1016/j.conbuildmat.2024.136529
  3. Bogomolova A.D., Pal'chikov D.S. Study of the fatigut strenght of layered polymer composite materials taking into account damage. Trudy MAI. 2024. No. 138. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=182660
  4. Xin Z. et al. Assessing the density and mechanical properties of ancient timber members based on the active infrared thermography. Construction and Building Materials. 2021. Vol. 304, P. 124614. DOI: 10.1016/j.conbuildmat.2021.124614
  5. Travin A.A. et al. Improvement of diagnostics of machine mechanisms using non-destructive testing methods. Trudy MAI. 2022. No. 127. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=170352. DOI: 10.34759/trd-2022-127-23
  6. Otoka A.G., Shlapak P.S. Experience in using magnetic particle and capillary methods of non-destructive testing for detecting defects in oil industry inspection objects. PROneft'. Professional'no o nefti. 2023. Vol. 8, No. 2 (28). P. 149-156. (In Russ.). DOI: 10.51890/2587-7399-2023-8-2-149-156 
  7. Laptev A.S. et al. Problems and tasks of standardization in the field of capillary non-destructive testing in the aviation industry (review). Informatsionno-ekonomicheskie aspekty standartizatsii i tekhnicheskogo regulirovaniya. 2023. No. 1 (71). P. 10-17. (In Russ.).
  8. Kudinov I.I. et al. Evaluation of the effectiveness of using ultraviolet radiation sources in fluorescent penetrant testing. Defektoskopiya. 2022. No. 1. P. 52-66. (In Russ.). DOI: 10.31857/S0130308222010055 
  9. Snarskii A.S., Yanushonok A.N. Non-destructive method for determining the mechanical properties of metal in main pipeline pipes. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya V. Promyshlennost'. Prikladnye nauki. 2024. No. 2 (50). P. 135-143. (In Russ.). DOI: 10.52928/2070-1616-2024-50-2-135-143 
  10. Goretskii YU.G., Korobko T.B. Application of non-destructive testing for assessing the mechanical properties of bimetallic thick-plate steel. Vserossiiskaya nauchno-prakticheskaya konferentsiya «Problemy mashinostroeniya: sovremennye tekhnologii obrabotki, materialy, mashiny, agregaty»: sbornik statei. Makhachkala: Dagestanskii gosudarstvennyi tekhnicheskii universitet Publ., 2024. P. 99-105. 
  11. Kuznetsov S.V., Kruchinin A.A., Ushkar M.N. Methodology for increasing the reliability and efficiency of on-board radio equipmentstructure at the early stages of design. Trudy MAI. 2024. No. 137. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=181879
  12. Zershchikov K.Yu., Semenov Yu.V. Structure of polymer composite materials reinforced with glass fibers of various lengths, studied by computed tomography. Mekhanika kompozitsionnykh materialov i konstruktsii. 2024. Vol. 30, No. 2. P. 141-152. (In Russ.). DOI: 10.33113/mkmk.ras.2024.30.02.01
  13. Gerasimov O.V. et al. CT-based assessment of the stress state of dog spines. Rossiiskii zhurnal biomekhaniki. 2024. Vol. 28, No. 1. P. 40-53. (In Russ.). DOI: 10.15593/RZhBiomeh/2024.1.03 
  14. Zhao X. et al. Prediction Models of Mechanical Properties of Jute/PLA Composite Based on X-ray Computed Tomography. Polymers. 2024. Vol. 16, No. 1. P. 160. DOI: 10.3390/polym16010160
  15. Akif'ev K.N. et al. Methodology for studying the porosity of fluid-saturated samples using X-ray computed tomography under uniaxial compression. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika. 2023. No. 2. P. 11-21. (In Russ.). DOI: 10.15593/perm.mech/2023.2.02
  16. Khosravani M.R., Reinicke T. On the use of X-ray computed tomography in assessment of 3D-printed components. Journal of Nondestructive Evaluation. 2020. Vol. 39, No. 4. P. 75. DOI: 10.1007/s10921-020-00721-1
  17. Bolshakov P., Kuchumov A.G., Kharin N., Akifyev K., Statsenko E., Silberschmidt V.V. Method of computational design foradditive manufacturing of hip endoprosthesis based on basic-cell concept. International Journal for Numerical Methods in Biomedical Engineering. 2024. Vol. 40, P. 3802. DOI: 10.1002/cnm.3802
  18. Tolstikov V.G. Pykhalov A.A. Stress-strain analysis of aircraft airframe parts from composite materials based on scanning and global-local problem solution. Trudy MAI. 2021. No. 118. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=158214. DOI: 10.34759/trd-2021-118-05
  19. Nikolaev A.L. et al. Ustroistvo 3D vizualizatsii deformirovannogo sostoyaniya poverkhnosti materiala v oblasti uprugikh deformatsii. Patent RU 2714515. MPK G01N19/08 (Device for 3D visualization of the deformed state of a material surface in the elastic deformation region. Patent RU 2714515), 18.02.2020.
  20. Yurgenson S.A. Ustroistvo dlya opredeleniya struktury materiala ili izdeliya, preimushchestvenno polimernogo kompozitsionnogo materiala. Patent RU 157585. MPK G01N3/02 (Device for determining the structure of a material or product, primarily a polymer composite material. Patent RU 157585.), 22.09.2014.
  21. Hufenbach W. et al. A test device for damage characterisation of composites based on in situ computed tomography. Composites Science and Technology. 2012. Vol. 72 (12), P. 1361–1367. DOI: 10.1016/j.compscitech.2012.05.007
  22. Qian W. et al. Time lapse in situ X-ray imaging of failure in structural materials under cyclic loads and extreme environments. Journal of Material Science and Technology. 2024. Vol. 175, P. 80–103. DOI: 10.1016/j.jmst.2023.07.041
  23. Ivannikov V.P. et al. Sposob issledovaniya soedinenii s natyagom s primeneniem ul'trazvukovoi tomografii. Patent RU 2719276. MPK G01N29/04 (Method for studying interference-fit joints using ultrasonic tomography. Patent RU 2719276), 17.04.2020.
  24. Sachenkov O.A. et al. Ustroistvo dlya opredeleniya struktury materiala ili obraztsov pri odnoosnom szhatii i sposob ego ispol'zovaniya. Patent RU 2755098. MPK G01N23/046 (Device for determining the structure of a material or samples under uniaxial compression and method of its use. Patent RU 2755098), 13.09.2021.
  25. Gao Y. et al. Single energy CT-based mass density and relative stopping power estimation for proton therapy using deep learning method. Frontiers in Oncology. 2023. Vol. 13, DOI: 10.3389/fonc.2023.1278180
  26. Nakao M. et al. Tolerance levels of mass density for CT number calibration in photon radiation therapy. Journal of Applied Clinical Medical Physics. 2019. Vol. 20, P. 45–52. DOI: 10.1002/acm2.12601
  27. Kanematsu N. et al. Modeling of body tissues for Monte Carlo simulation of radiotherapy treatments planned with conventional x-ray CT systems. Physics in Medicine and Biology. 2016. Vol. 61, P. 5037–50. DOI: 10.1088/0031-9155/61/13/5037
  28. Kharin N.V. et al. Influence of structural parameters on the physical and mechanical properties of heterogeneous samples under compressive load. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie. 2024. No. 8 (773). P. 11-23. (In Russ.)
  29. Kharin N.V. et al. Study of the porosity of a sample with fluid-saturated closed pores under external load. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya: Estestvennye nauki. 2024. No. 3 (114). P. 70-91. (In Russ.)


Download

mai.ru — informational site MAI

Copyright © 2000-2025 by MAI

Вход