Testing of an adaptive engine parameters observer as part of the information and measurement system in the process of high-thrust aircraft engine testing


Аuthors

Inozemtsev A. A.1, 2*, Pleshivykh A. S.1**, Sazhenkov A. N.1*, Pervadchuk V. P.2***, Lamanova N. G.2****, Vasketsov . A.2*****

1. "UEC-Aviadvigatel"JSC, 93, Komsomolsky Prospect, Perm, 614990, Russia
2. Perm National Research Polytechnic University, PNRPU, 29, Komsomolsky Prospekt, Perm, 614990, Russia

*e-mail: office@avid.ru
**e-mail: arthur.p.s.1995@mail.ru
***e-mail: pervadchuk@mail.ru
****e-mail: nglaman@mail.ru
*****e-mail: ivanvask1@yandex.ru

Abstract

The article presents the results of full-scale tests of an adaptive observer based on the Yazvinsky filter in the system of a fifth-generation turbofan engine with a high thrust of 35 tf.

To conduct the research, a mathematical model of the adaptive observer was formed with subsequent integration into the information and measuring bench equipment. The adaptive algorithm for generating information redundancy includes an algorithm for identifying the mathematical model of the turbofan engine ACS and an algorithm for an optimal observer that generates optimal estimates of the parameters of the turbofan engine ACS output vector in real time. The program code of the tested adaptive observer was created in C++ and its size was 38 KB. The frequency of polling the measured input parameters of the Yazvinsky filter and the frequency of issuing calculated estimates is 10 Hz.

The work was carried out on modern, specialized and certified equipment operating in real time. To ensure the safety of engine tests, the method was tested in the observation mode, i.e. without the ability to control the adaptive observer by the bench and engine systems. The output vector of the engine automatic control system estimated using the adaptive observer includes the following engine parameters: low-pressure compressor rotor speed nВ, high-pressure compressor rotor speed nК, air pressure behind the high-pressure compressor РК, and gas temperature behind the low-pressure turbine ТТ.

Testing the algorithmic backup method based on the Yazvinsky filter confirmed its ability to operate as part of a digital turbofan engine ACS with acceptable accuracy indicators in statics. In the studied steady-state operating modes from idle to takeoff mode, the maximum offset does not exceed |0.008| %.

Experimental testing of the algorithmic backup method based on the Yazvinsky filter was performed for the first time in the Russian aircraft engine industry.

Based on the test results, directions for further research have been formed, which include the study of an adaptive observer in dynamic operating modes of a turbojet two-circuit engine (acceleration, discharges, counter-acceleration, go-around) and in case of physical failures of the engine parameter sensors: low-pressure compressor rotor speed nВ, high-pressure compressor rotor speed nК, air pressure behind the high-pressure compressor РК, gas temperature behind the low-pressure turbine ТТ at the inlet to the calculation algorithm.

Keywords:

aircraft engine, technology demonstrator engine, electronic engine controller, algorithmic redundancy, mathematical model, fault tolerance, optimal observer, Kalman filter, Yazvinsky filter

References

  1. Avgustinovich V.G., Kuznetsova T.A. To improve the reliability of gas turbine engine control systems using algorithmic methods. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2015. Vol. 326, No. 9. P. 68–77. (In Russ.)

  2. Avgustinovich V.G., Kuznetsova T.A., Kurakin A.D., Fatykov A.I., Yakushev A.P. Linear adaptive on-board mathematical model of the engine to improve the reliability of automatic control systems of aircraft gas turbine engines. Vestnik PNIPU. Aerokosmicheskaya tekhnika. 2015. No. 42. P. 47–60. (In Russ.)

  3. Kouen K.F.N., Grant P.M. Adaptivnye fil'try (Adaptive filters). Moscow: Mir Publ., 1988. 440 p.

  4. Gol'berg F.D., Gurevich O.S., Petukhov A.A. Amathematical model of the engine in acs gte for increasing of safety and quality control. Trudy MAI. 2012. No. 58. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=33278

  5. Krivosheev I.A., Godovanyuk A.G. Use of gas turbine engine models in adaptive fault-tolerant control and monitoring systems. Vestnik UGATU. 2010. No. 5 (40). P. 10-14. (In Russ.)

  6. Kuznetsova T.A., Avgustinovich V.G., Gubarev E.A. Algorithms for diagnostics and parrying failures of measurement channels of the automatic control system of an aircraft engine. Vestnik PNIPU. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniya. 2015. No. 16. P. 5–14. (In Russ.)

  7. Ezrokhi Y.A., Kalenskii S.M. Identification of gte mathematical model by test data. Trudy MAI. 2022. No. 122. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=164276. DOI: 10.34759/trd-2022-122-19

  8. Gurevich O.S., Gol'berg F.D., Zuev S. A., Busurin V.I. Compressor mechanization control of gas-turbine engine using his simulation model. Trudy MAI. 2017. No. 93. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=80286

  9. Inozemtsev A.A., Lamanova N.G., Pleshivykh A.S., Sazhenkov A.N., Gribkov I.N. Analytical redundancy in the automatic control system of an aircraft turbojet twin-circuit engine based on optimal observers. Izvestiya YUFU. Tekhnicheskie nauki. 2022. No. 57. P. 65-78. (In Russ.). DOI: 10.18522/2311-3103-2022-2-65-78

  10. Inozemtsev A.A., Lamanova N.G., Pleshivykh A.S., Sazhenkov A.N., Gribkov I.N. Algorithmic method for increasing the fault tolerance of the automatic control and monitoring system of a turbojet twin-circuit engine. Aviatsionnaya tekhnika. Izvestiya vuzov. 2022. No. 2. P. 179-183. (In Russ.)

  11. Inozemtsev A.A., Lamanova N.G., Pleshivykh A.S., Sazhenkov A.N., Lisovin I.G., Gribkov I.N. Synthesis of an optimal observer for failures in the measurement channel of automatic control and monitoring systems of a turbojet twin-circuit engine. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Aerokosmicheskaya tekhnika. 2019. No. 57. P. 162-171. (In Russ.). DOI: 10.15593/2224-9982/2020.63.08

  12. Inozemtsev A.A., Lamanova N.G., Pleshivykh A.S., Sazhenkov A.N., Gribkov I.N. Synthesis of an optimal observer in the absence of a priori information on the characteristics of the disturbance noise of the automatic control and monitoring system of a turbojet twin-circuit engine. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Aerokosmicheskaya tekhnika. 2020. No. 57. P. 70-80. (In Russ.)

  13. Inozemtsev A.A. Development of technologies in domestic civil aircraft engine manufacturing. Trudy Akademii nauk aviatsii i vozdukhoplavaniya. 2024. No. 1. P. 4-17. (In Russ.)

  14. Makarov A.V., Inozemtsev A.A., Degtyar' V.G., Kharanzhevskii E.V., Kotel'nikov A.B., Vopneruk A.A. Ensuring Russia's technological sovereignty in metallurgy and mechanical engineering. Vestnik Rossiiskoi akademii nauk. 2024. Vol. 94, No. 3. P. 232–245. (In Russ.)

  15. Pervadchuk V.P., Davydov A.R. Prikladnoi statisticheskii analiz rezul'tatov mekhanicheskikh ispytanii (Applied statistical analysis of mechanical test results: a tutorial). Perm': Izd-vo PNIPU Publ., 2018. 131 p.

  16. Jazwinski A.H. Stochastic Processes and Filtering Theory. New York: Academic press, 1970. 376 p.

  17. Groshev A.V. Algorithmic improvement strategy for accuracy characteristics and information reliability of inertial satellite navigation systems withing unmanned aerial vehicles. Trudy MAI. 2019. No. 104. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=102217

  18. Inozemtsev A.A., Savenkov Yu.S., Sazhenkov A.N. Sposob diagnostiki i parirovaniya otkazov datchikov reguliruemykh parametrov dvukhkanal'noi elektronnoi sistemy avtomaticheskogo upravleniya gazoturbinnogo dvigatelya. Patent RU 2817573C1. MPK F02C 9/00 (Method for diagnosing and countering failures of sensors of adjustable parameters of a two-channel electronic automatic control system of a gas turbine engine Patent RU 2817573C1. MPK F02C 9/00), 16.04.2014.

  19. Inozemtsev A.A. PD-14 engine – the future of the Russian aviation industry. Zhurnal «Innovatsii». 2013. No. 12. P. 77-80. (In Russ.)

  20. Gibson J.S., Tesch J., Jumper E., Gordeyev S. Identification, prediction and control of aero optical wavefronts in laser beam propagation. 42nd AIAA Plasmadynamics and Laser Conf. (Honolulu, Hawaii, USA, June 27-30, 2011): Proc. Wash.: AIAA, 2011. 11 p. DOI: 10.2514/6.2011-3276

  21. Arun C. Interference Cancellation in Aircraft Cockpit by Adaptive Filters. MATEC Web of Conferences. 2016. No. 45. P. 05004. DOI: 10.2514/6.2011-3276

  22. Haykin S. Adaptive Filter Theory, Englewood Cliffs, N.J.: Prentice-Hall, Inc., 4 th Edition. 2001. 92 p.

  23. Dzhigan V.I. Adaptivnaya fil'tratsiya signalov: teoriya i algoritmy (Adaptive signal filtering: theory and algorithms). Moscow: Tekhnosfera Publ., 2013. 527 p.

  24. Titov Yu.K., Filippenkov R.G., Khizhnyakov Yu.N., Yuzhakov A.A. Development of an adaptive neuro-fuzzy controller for turbofan engine fan speed. Izvestiya vysshikh uchebnykh zavedenii. Elektromekhanika. 2013. No. 2. P. 47–50. (In Russ.)

  25. Gurevich O.S. Sistemy avtomaticheskogo upravleniya aviatsionnymi gazoturbinnymi dvigatelyami: Entsiklopedicheskii spravochnik (Automatic control systems for aircraft gas turbine engines: Encyclopedic reference book). Moscow: Torus Press Publ., 2011. 208 p.

  26. Prokhorov A.V., Ushakov V.G., Ushakov N.G. Zadachi po teorii veroyatnostei. Osnovnye ponyatiya. Predel'nye teoremy. Sluchainye protsessy (Problems in Probability Theory. Basic Concepts. Limit Theorems. Random Processes). Moscow: Universitet Publ., 2009. 327 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2025 by MAI

Вход