Building a control system of a small-sized aircraft in the take-off and landing areas under wind conditions


Аuthors

Tretyakov A. V.1*, Piskunova O. I.2**

1. Dubna International University for Nature, Society and Man, 141980 Moscow region, Dubna, Universitetskaya str., 19
2. Dubna State University, Dubna, Moscow region, Russia

*e-mail: treav@mail.ru
**e-mail: ifi@uni-dubna.ru

Abstract

The paper examines the stabilization contour (SC) and control systems (CS) of a small-sized aircraft (SSA) in the longitudinal plane at the take-off and landing sites under the influence of wind disturbances with an intensity characteristic of the surface layer.

The study of SC was carried out on a mathematical model based on the SSA equations of motion linearized by the method of small perturbations. The aerodynamic and mass-inertia parameters of the SSA are defined as dynamic coefficients of the linearized SC.

The investigation was conducted by the method of frequency synthesis. The D-partitioning method was used to construct the stability range of the aircraft at the stage of preliminary assessment of its flight performance. This method has been completed by calculating the stability subdomains of margins in amplitude and phase, obtained by using of the logarithmic form of the Nyquist stability criterion. The influence of the dynamic characteristics of the steering drives and the angular velocity sensors on the formation of the stability region is taken into account.

The proposed method makes it possible to estimate the stability margins in a specified range of frequency domain functioning of the investigated systems. For performing of calculations the programs have been compiled in the language of the MATLAB software environment.

The wind disturbance is made by increasing the SSA angle of attack by a value proportional to the wind effect. The wind effect near the ground is taken into account primarily due to the low values of the air flow pressures acting on the SSA in this section of the flight. Real measurements collected on the ground, in height and relief corresponding to the conditions of the SSA launch, were used as the initial data for the wind model formation. The approximation of the wind effect is performed by using the fast Fourier transform method.

In order for the calculation results to reflect the nature of wind flow variability in the area under consideration as realistically as possible the obtained approximation got complacent with the initial data using the Kalman filter.

Recommendations on the choice of gain coefficients for SC and CS parameters are given. The proposed techniques can be used to study the stability characteristics and control the SSA balancing processes at the take-off and landing sites.

Keywords:

angular stabilization system, small-sized aircraft, aircraft stabilization, wind model, stability reserves, D-partitioning method, Kalman filter, fast Fourier transform

References

  1. Abadeev E.M., Piskunova O.I., Tret'yakov A.V. Method for adaptive control of the longitudinal movement of a small-sized aircraft with a signal limitation of the integral component. Trudy MAI. 2022. No. 124. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=167101. DOI: 10.34759/trd-2022-124-18

  2. Parycheva G.., Yaroshevskii V.A. The Problem of Forming Calculated Wind Disturbances for Flight Dynamics Problems. Uchenye zapiski TSAGI. 2001. Vol. XXXII, No. 1-2. P. 102-118.

  3. Mikeladze V.G. Aviatsiya obshchego naznacheniya rekomendatsii dlya konstruktorov (General Aviation: Recommendations for Designers). Zhukovskii: TSAGI Publ., 1996. 300 p.

  4. Matveev V.V., Raspopov V.Ya. Osnovy postroeniya besplatformennykh inertsial'nykh navigatsionnykh sistem (Fundamentals of Building Inertial Navigation Systems). Saint Petersburg: OAO «Kontsern TSNII «Elektropribor» Publ., 2009. 280 p.

  5. Vostrikov A.S., Frantsuzova G.A. Teoriya avtomaticheskogo regulirovaniya (Theory of Automatic Control). Moscow: Yurait Publ., 2019. 279 p.

  6. Chepurnykh I.V. Dinamika poleta samoletov (Dynamics of Aircraft Flight). Komsomol'sk-na-Amure: KnAGTU Publ., 2014. 112 p.

  7. Abadeev E.M., Lyapunov V.V. Dinamicheskoe proektirovanie sistem avtonomnogo upravleniya bespilotnymi letatel'nymi apparatami. Monografiya. (Dynamic Design of Autonomous Control Systems for Unmanned Aerial Vehicles. Monograph.). Dubna: Gosudarstvennyi universitet Dubna Publ., 2017, 265 p.

  8. Rozanova U.A., Tret'yakov A.V. Methodology for Forming an Algorithm for Stabilizing a Small-Sized Aircraft. Sbornik annotatsii konkursnykh rabot XV Vserossiiskogo mezhotraslevogo molodezhnogo konkursa nauchno-tekhnicheskikh rabot i proektov «Molodezh' i budushchee aviatsii i kosmonavtiki». Moscow: Izdatel'stvo Pero Publ., 2023. P. 76-77.

  9. Gaiduk A.R., Belyaev V.E., P'yavchenko T.A. Teoriya avtomaticheskogo upravleniya v primerakh i zadachakh s resheniyami v MATLAB (Theory of Automatic Control in Examples and Problems with Solutions in MATLAB). Saint Petersburg: Lan' Publ., 2019. 464 p.

  10. Fedosov B.T., Klinachev N.V. On the method of synthesis of linear systems based on the construction of D-partitioning regions for the contour gain factor. URL: https://klinachevnv.ru/index-i.htm

  11. Sinitsa S.P., Tret'yakov A.V. Research and adjustment of adaptive digital-analog control system of the unmanned flying vehicles. Trudy MAI. 2011. No. 45. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=25521

  12. Kim D.P. Teoriya avtomaticheskogo upravleniya (Theory of Automatic Control). Moscow: Yurait Publ., 2023. 276 p.

  13. Bondarenko V.F., Dubovets V.D. Tropa v MATLAB (Tropy in MATLAB). Minsk: Kharvest Publ., 2008. 219 p.

  14. Guseinov A.B., Lyapunov V.V., Trusov V.N. Proektirovanie sistem upravleniya krylatykh raket (Design of Control Systems for Cruise Missiles). Moscow: Izd-wo MAI Publ., 192 p.

  15. Efremov A.V., Zakharchenko V.F., Ovcharenko V.N. et al. Dinamika poleta (Flight Dynamics). Moscow: Mashinostroenie Publ., 2011. 776 p.

  16. Balakin V.L., Lazarev Yu.N. Dinamika poleta samoleta. Raschet traektorii i letnykh kharakteristik (Aircraft Flight Dynamics. Calculation of Trajectories and Flight Characteristics). Samara: Samarskii gosudarstvennyi aerokosmicheskii universitet Publ., 2002. 56 p.

  17. Rybnikov S.I., Nguen T.Sh. Improving the accuracy of lateral movement control of the medium-haul aircraft using the Kalman observer of alternating wind disturbance. Trudy MAI. 2018. No. 98. (In Russ.). URL: http://trudymai.ru/eng/published.php?ID=90450

  18. Frolova O.A. Interference-protected complex altitude meter of an unmanned aerial vehicle. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2010. No. 4 (1). P. 146–152. (In Russ.)

  19. Pupkov K.A., Egupov N.D., Barkin A.I. et al. Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniya. Tom 2: Statisticheskaya dinamika i identifikatsiya sistem avtomaticheskogo upravleniya (Methods of Classical and Modern Theory of Automatic Control. Volume 2: Statistical Dynamics and Identification of Automatic Control Systems). Moscow: MGTU im. Baumana Publ., 2004. 642 p.

  20. Ivanov D.S., Karpenko S.O., Ovchinnikov M.Yu. Algorithm for Estimating the Orientation Parameters of a Small Spacecraft Using the Kalman Filter. Preprinty IPM im. M.V. Keldysha. 2009. No. 48. 32 p. (In Russ.). URL: http://library.keldysh.ru/preprint.asp?id=2009-48

  21. Khrustalev M.M., Khalina A.S. Identifiers of reduced dimension in the problem of the unmanned aerial vehicle stabilization in perturbed atmosphere. Trudy MAI. 2018. No. 102. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=99065

  22. Kovaleva A.R., Tret'yakov A.V. Design of a Wind Impact Model for a Launching UAV. Sbornik annotatsii konkursnykh rabot XVI Vserossiiskogo mezhotraslevogo molodezhnogo konkursa nauchno-tekhnicheskikh rabot i proektov «Molodezh' i budushchee aviatsii i kosmonavtiki». Moscow: Izdatel'stvo Pero Publ., 2024. P. 77-78.

  23. Bleikhut R. Bystrye algoritmy tsifrovoi obrabotki signalov (Fast Algorithms for Digital Signal Processing). Moscow: Mir Publ., 1989. 448 p.

  24. Bebeshko A.S., Ivanov P.I. Flight simulation of the «object—controlled gliding parachute» system, taking into account the terrain and wind effects. Trudy MAI. 2024. No. 137. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=181888

  25. Rybin A.V. Investigation of the dynamics of passenger airplane landing. Trudy MAI. 2014. No. 74. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=49196


Download

mai.ru — informational site MAI

Copyright © 2000-2025 by MAI

Вход