Robust trajectory estimation for a maneuvering aircraft under constraints on the acceleration vector

Aviation technics and technology


Аuthors

Mamayev A. A.1*, Semenikhin K. V.2**

1. Innovatsion Firm SNIIP-Atom, 5, Paspletina St., Moscow, 123060, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: mamaevartem@gmail.ru
**e-mail: siemenkv@rambler.ru

Abstract

The problem of a robust trajectory estimation for a maneuvering aircraft from the range and direction cosine measurements is studied in account for unknown parameters constraints.
The problem of aircraft trajectory estimation is studied in the minimax framework. Using the ellipsoidal constraints on the acceleration vector, the minimax formulation of the estimation problem is obtained. The numerical algorithm designed for trajectory estimation is based on usage of the semidefinite-programming solvers implemented in MATLAB.
The estimation algorithm is designed on the basis of the convex optimization theory. The efficiency of the obtained solutions is illustrated by the means of computer simulation.
The designed estimation algorithm might appear very efficient if the number of measurements is too few or the useful signal model is specified by large quantity of unknown parameters.
The minimax formulation of the estimation problem is reduced to the convex program with a linear objective and LMI constraints (LMI — linear matrix inequality).
The minimax Formulation of the estimation problem is reduced to the convex program with linear objective and LMI constraints (LMI-kinear matrix inequity).

Keywords:

observation model, minimax estimation, robust estimate, ellipsoidal constraints, semidefinite programming

References

  1. Chernous'ko F.L. Ocenivanie fazovogo sostojanija dinamicheskih system (The evaluation of the phase state of dynamic systems. The method of ellipsoids), Moscow, Nauka, 1988, 319 p.
  2. Kurzhanski A.B., Valyi I. Ellipsoidal calculus for estimation and control. Boston: Birkhäuser, 1997, 321 p.
  3. Kiseljov O.N., Poljak B.T. Avtomatika i telemehanik, 1991, no. 9, pp. 133–144.
  4. Kiselev O.N., Polyak B.T. Ellipsoidal estimation with respect to a generalized criterion, Automation and Remote Control, 1991, vol. 52, no. 9, pp 1281–1292.
  5. Anan'ev B.I. Avtomatika i telemehanika, 2007, no.11, pp. 3-11.
  6. Anan’ev B.I. Multistep specific stochastic inclusions and their multiestimates, Automation and Remote Control, 2007, vol. 68, no. 11, pp. 1891–1899.
  7. Boyd S., Vandenberghe L. Convex optimization. Cambridge: Cambridge Univ. Press, 2004, 716 p.
  8. Sturm J.F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optim. Methods Software, 1999, vol. 11, no. 12, pp. 625–653.
  9. Grant M., Boyd S. CVX users’ guide (for CVX version 1.21), available at: http://cvxr.com/cvx/download, 2011.
  10. Kornejchuk N.P. Splajny v teorii priblizhenija (Splines in the theory of approximation), Moscow, Nauka, 1984, 352 p.
  11. Demidenko E.Z. Linejnaja i nelinejnaja regressii (Linear and non-linear regression), Moscow, Finansy i statistika, 1981, 304 p.
  12. Val'd A. Pozicionnye igry, Sbornik statei, Moscow, Nauka, 1967, pp.524.
  13. Kurzhanskij A.B. Upravlenie i ocenivanie v uslovijah neopredelennosti (Control and estimation in conditions of uncertainty), Moscow, Nauka, 1977, 392 p.
  14. Albert A. Regressija, psevdoinversija i rekurrentnoe ocenivanie (The regression, pseuinversion and recurrent of evaluation), Moscow, Nauka, 1977, 224 p.
  15. Ben-Tal A., El Ghaoui L., Nemirovski A. Robust semidefinite programming. Handbook on semidefinite programming. Kluwer Acad. Publ., 2000, pp.139-162 (500 p.)
  16. Zhdanjuk B.F. Osnovy statisticheskoj obrabotki traektornyh izmerenij (The basis of statistical processing of trajectory measurement), Moscow, Sov. radio, 1978, 384 p.
  17. Bedin D.A., Packo V.S., Fedotov A.A., Beljakov A.V., Strokov K.V. Avtomatika i telemehanika, 2010, no. 2, pp. 17-30.
  18. Bedin D.A., Patsko V.S., Fedotov A.A., Belyakov A.V., Strokov K.V. Restoration of aircraft trajectory from inaccurate measurements ,Automation and Remote Control, 2010, vol. 71, no. 2, pp. 185–197.
  19. Mamaev A.A., Semenihin K.V. Elektronnyi zhurnal “Trudy MAI”, 2011, no.43, available at: http://www.mai.ru/science/trudy/published.php?ID=24708 (accessed 30.03.2011)

Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход