About Possibility of Strapdown Gravitation-Navigation Complex for Unmanned Aerial Vehicle Guidance Creation

Control and navigation systems


Afonin A. A.1*, Sulakov A. S.2*, Yamashev G. G.2, Mikhailin D. A.3**, Mirzoyan L. A.***, Kurmakov D. V.2****

1. ,
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
3. Main research and testing center for robotics Ministry of Defense of the Russian , 5, ul. Seregina, Moscow, 125167, Russia

*e-mail: kaf305-mai@mail.ru
**e-mail: tau_301@mail.ru
***e-mail: lola-mai@mail.ru
****e-mail: dvkurmakov@gmail.com


This paper presents a new approach to creation of integrated informative-measuring complex for unmanned aerial vehicle (UAV) automated guidance. The authors consider a variant of the integrated complex including flight planning system, automatic UAV guidance system, and strapdown gravitation-inertial navigation complex — the main source of attitude, navigation, and gravimetric information both for operation of UAV guidance system, and for realization of the flight objective function — execution of automatized vector gravimetric survey. Operation of the main modules of the integrated complex is illustrated with functional and structural diagrams, mathematical models, and operation algorithms. The new approach offered can provide qualitative and quantitative benefits when carrying out aerial gravimetric surveying both at the part of mobile gravimetric measurements, and at the part of planning, information provision, and UAV guidance optimization.
The authors consider the complex, which consists of flight planning system, UAV automatic control system and strapdown gravitation-inertial navigation complex, which is the main source of attitude, navigation and gravity information both for the guidance system and for the target function of UAV mission – automated vector aerial gravimetric surveying.
The suggested technology of aerial gravimetric surveying represents a new qualitative technical and economic level of solution using modern achievements in the field of strapdown and satellite navigation technologies, up-to-date means of electronics, computer science and computer engineering on the basis of a small-sized, agile, low-cost UAV.
The new approach to the design of integrated high-precision navigation and gravimetric complex for UAV guidance considered in the paper substantiates actuality and promising availability of proposed solution, expounds principal fundamentals of the new technology concept of strapdown aerial gravimetric survey by small-sized UAV, presents structures, composition, mathematical models and algorithms of the basic components of the complex.
The results of research conducted demonstrate that creation of the integrated complex will provide an effective solution for orientation, navigation, and guidance problems of UAV, as well as for vector gravimetric measurements problem in accordance with the new aerial gravitational technology.


strapdown graviinertial navigation complex, functional algorithm, gyroscope, accelerometer, satellite navigation system, magnetometer compass system, anomaly, vector gravimetry, flight planning system, automatic control system, neural network system, optimum estimation, control law, autothrottle control


  1. Peshehonova V.G. Primenenie graviinercial'nyh tehnologij ( Application gravitation-inertial technonogy) Eelektropribor, CNII, 2002, 316 p.
  2. Afonin A.A., Sulakov A.S. Mehatronika, avtomatizacija, upravlenie, 2011, no.9, pp.58-65.
  3. Afonin A.A., Sulakov A.S. Aviakosmicheskoe priborostroenie, 2011, no.8, pp.17-24.
  4. Tjuvin A.V., Afonin A.A., Chernomorskij A.I. Aviakosmicheskoe priborostroenie, 2005, no.3, pp.24-29.
  5. Afonin A.A., Tjuvin A.V., Karachevcev M.V. Aviakosmicheskoe priborostroenie, 2007, no.3, pp.30-36.
  6. Andreev V.D. Teorija inercial'noj navigacii. Avtonomnye sistemy.(The theory of inertial navigation. Autonomous system), Moscow, Nauka, 1966, 580 p.
  7. Afonin A.A., Sulakov A.S., Tjuvin A.V., Sachkov G.P. Materialy XXXVIII Vserossijskoj konferencii «Upravleniju dvizheniem korablej i special'nyh podvodnyh apparatov», Moscow, 2012, pp.24-32.
  8. Apparatura radionavigacionnaja global'noj sputnikovoj sistemy i global'noj sistemy pozicionirovanija. Sistemy koordinat. Metody preobrazovanija koordinat opredelenija tochek, GOST R 51794-2001 (Radionavigational equipment of global navigation satellite system and global position system. Coordinate systems. Methods of transformations for determinated points coordinates State Standart R 51794-2001), Moscow, Standarty, 2001, 15 p.
  9. Lebedev G.N., Mirzojan L.A. Aviakosmicheskoe priborostroenie, 2005, №12, pp.35-41.
  10. Lebedev G.N., Mirzojan L.A. Materialy Mezhdunarodnoj nauchnoj konferencii «Sovremennye problemy prikladnoj matematiki i matematicheskogo modelirovanija», –Voronezh, VGTA, 2005, pp.52-57.
  11. Lebedev G.N., Mihajlin D.A., Efimov A.V. Vestnik Moskovskogo aviacionnogo instituta, 2012, vol. 19, №1, pp.12-16.
  12. Mihalev I.A., Okoemov B.N., Chikulaev M.S. Sistemy avtomaticheskogo upravlenija samoletom (Automatic control systems of the aircraft), Moscow, Mashinostroenie, 1971, 464 p.
  13. Gorbachev Ju.V., Kurmakov D.V., Rybnikov S.I. Elektronnyj zhurnal «Trudy MAI», 2011, no.49, available at: http://www.mai.ru/science/trudy/published.php?ID=28063&PAGEN_2=2 (accessed 27,12,2011)


mai.ru — informational site MAI

Copyright © 2000-2021 by MAI