Calculation of Heat and Mass Transfer on the Landing Spacecraft Surface

Space technologies


Nikitin P. V.1*, Pavlyuk E. A.2**

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Power Engineering Design Bureau, 11, Metallurgov St., Moscow, 111401, Russia



The spacecraft protection against the intense aerodynamic heating is one of the most important problems inprogram of outer space exploration. The main task at the design stage of creating a new spacecraft is selection and development of reliable and efficient thermal protection system. For the development of such a system is very important to calculate correctly the thermodynamic processes of gas dynamics, heat and mass transfer on the spacecraft surface. Otherwise, the system of thermal protection would be unreliable and spacecraft cannot achieve the strategic mission.
The article presents the results of the analysis of heat and mass transfer on the cold surface of the landing spacecraft, designed as a cone blunted by sphere, during it descend from a circular orbit in the dense layers of the Earth’s atmosphere along a complex hypothetical trajectory. The calculation of heattransferwas conducted using known parabolic criterion ratios. Such engineering calculation does not require knowledge of complex wave gas dynamicsof spacecraft in hypersonic flow. The gas dynamics parameters of the outer edge of the boundary layer, which are necessary for computation, were calculated using an algorithm withgas dynamics tables of supersonic flow on the surface of a cones blunted by sphere.
By using this algorithm the trajectory parameters and heat transfer on the surface of the landing spacecraft in a hypersonic flight phase with duration of more 1000secondswere calculated. The analysis of the calculation results was a basis for selection of «active» thermal protection system for warhead of landing spacecraft. The calculation of required mass flow rate of the cooling gas, which gives reliable operating conditions of the system in the area of blunting, was conducted.


landing spacecraft, heat and mass transfer, hypersonic speed, thermal protection, trajectory parameters, stagnation enthalpy, mass flow rate of cooling gas


  1. Nikitin P.V. Teplovaya zashchita (Thermal protection), Moscow, MAI, 2006, 510 p.
  2. Narimanov G.S., Tikhonravov M.K. Osnovy teorii poleta kosmicheskikh apparatov (Fundamentals of the theory of flight spacecraft), Moscow, Mashinostroenie, 1972, 608 p.
  3. Vargaftik N.B. Teplofizicheskie svoistva gazov i zhidkostei (Thermophysical properties of gases and liquids), Moscow, Nauka, 1972, 720 p.
  4. Avduevskii V.S., Galitseiskii B.M., Glebov G.A. Osnovy teploperedachi v aviatsionnoi i raketno-kosmicheskoi tekhnike (Fundamentals of Heat Transfer in aviation and space technology), Moscow, Mashinostroenie,1992, 528 p.
  5. Girshfel’der Dzh., Kertis Ch., Berd R. Molekulyarnaya teoriya gazov i zhidkostei (Molecular theory of gases and liquids), Moscow, IL, 1961, 929 p.
  6. Anfimov N.A. Mekhanika zhidkosti i gaza, 1966, no. 1, pp. 28-36.
  7. Anfimov N.A. Teplofizika vysokikh temperatur, 1965, no. 3, pp. 409-420.

Download — informational site MAI

Copyright © 2000-2021 by MAI