Construction development of a combined case and its dynamic strength calculation at breakage of the rotor blade

Aerospace propulsion engineering


Krundaeva A. N.1*, Shmotin Y. N.2**

1. United Engine Corporation “Saturn”, 163, Lenin av., Rybinsk, Yaroslavl region, 152903, Russia
2. United engine corporation (UEC), 16, Budyonny avenue, Moscow, 105118, Russia



Presented paper is devoted to solution to the problem of blade fragments localization during its accidental breakage with the help of proposed design of a combined case which consists of the metallic base and layer of untreated aramid yarns tightly wound on the metal substrate.
The main purpose is to prevent the combined case damage of aircraft structure dangling from the accident decayed fragments of the compressor including a torn shoulder blade or its fragment.
In the frame of this work a robust finite element combined case modeling methodology, in which there is an approach for modeling of winding impregnated aramid yarns, was created. Method for construction and configuration of computer system based on a three-dimensional code LS-DYNA, which provides authentic simulation of multi-layer composite materials used in protective systems for localization of engine broken blades, is implemented.
Developed numerical technology of calculation of structural elements dynamic deformation is verified by the results of field tests.


combined case, impregnated aramid fabric, deformation, broken scapula, strength, armor protection, calculation, finite element method


  1. Bazhenov S.L., Berlin A.A., Kulkov A.A., Oshmyan V.G. Polymer composite materials. Strength and technology, Dolgoprudny, Intellect, 2010, pp. 104-121.
  2. Xia Y., Wang Y. The Effects of Strain Rate on the Mechanical Behavior of Kevlar Fibre Bundles: An Experimental and Theoretical Study, Composite Part A: Applied Science and Manufacturing, 1998, vol. 29A, pp. 1411-15.
  3. Xia Y., Wang Y. Experimental and Theoretical Study on the Strain Rate and Temperature Dependence of Mechanical Behavior of Kevlar Fibre, Composite Part A: Applied Science and Manufacturing, 1999, vol. 30, pp. 1251-57.
  4. Tabiei A., Yi W. Comparative Study of Predictive Methods for Woven Fabric Composite Elastic Properties, Journal of Composites and Structures, 2002, vol. 58, pp. 149-64.
  5. Scida D., Aboura Z., Benzeggagh M.L., Bocherens E. A Micromechanics Model for 3D Elasticity and Failure of Woven-Fibre Composite Materials, Journal of Composite Science and Technology, 1999, vol.59, pp. 505-17.
  6. Peng X.Q., Cao J. Numerical Determination of Mechanical Elastic Constants of Textile Composites, 15th Annual Technical Conference of the American Society for Composites, College Station, Texas, 2000, pp. 301-22.
  7. Tabiei A., Ivanov I. Computational Micro-Mechanical Model of Flexible Woven Fabric for Finite Element Impact Simulation, Proceedings of 7th International LS-DYNA Users Conference, 2002, pp. 8-40.
  8. Roylance D., Chammas P., Ting J., Chi H., Scott B. Numerical Modeling of Fabric Impact, Proceedings of the National Meeting of the American Society of Mechanical Engineers (ASME), San Fransisco, California, 1995, pp. 34-48.
  9. Barbero E.J., Trovillion J., Mayugo J.A., Sikkil K.K. Finite Element Modeling of Plain Weave Fabrics From Photomicrograph Measurements, Journal of Composite Structures, 2006,vol.73, no.1, pp. 41-52.
  10. Barbero E.J., Lonetti P., Sikkil K.K. Finite Element Continuum Damage Modeling of Plain Weave Reinforced Composites, Composites Part B: Engineering, 2006,vol. 37, pp. 137-47.
  11. Shockey D.A., Erlich D.C., Simons J.W. Improved Barriers to Turbine Engine Fragments: Interim Report III, FAA report, DOT/FAA/AR-99/8, 2001.
  12. Software complex for 3D modeling of processes non-stationary non-linear deformation LS-DYNA, LSTC, Livermore, Ca, USA, Version 971. Revision 7600.398, 2009.

Download — informational site MAI

Copyright © 2000-2024 by MAI