Methodology development for calculation of the multiple unit thermionic thermal protection of hypersonic aircraft

Aviation technologies


Аuthors

Kernozhitsky V. A.*, Kolychev A. V.**, Makarenko A. V.***

Baltic State Technical University “VOENMEH ” named after D.F. Ustinov, 1, 1st Krasnoarmeyskaya str., Saint Petersburg, 190005, Russia

*e-mail: vakern@mail.ru
**e-mail: migom@mail.ru
***e-mail: mc617@rambler.ru

Abstract

Presented article is devoted to structure realization of thermionic thermal protection of the multiple unit scheme with a characteristic size of thermionic elements about 1-10 mm. There is a technique for calculation and numerical estimations of thermal protection operation performances during the aerodynamic heating of hypersonic aircraft structure units in the temperatures ranges from 1500K to 2100K. It is shown, that thermal flows of electronic cooling can make an essential contribution into the balance of thermal flows on the forward edge of hypersonic aircraft wing, protected with the help of multiple unit thermionic thermal protection during the flight, because thermal streams of electronic cooling can reach size in 1.5MW/m2 and above, that is directly confirmed by known experimental data about thermionic transformation. The maximum temperature of structure elements with multiple unit thermionic thermal protection is lees then radiation and equilibrium temperature in a point of the maximum thermal streams by a 600K.
The received results can be used during the development and creation of hypersonic aircraft of various types and purposes at the stage of detailed and technical design.

Keywords:

thermionic issue, electronic cooling, electric energy, hypersonic aircraft; thermal protection

References

  1. Kernozhitsky V.A., Kolychev A.V., Okhochinsky D.M. Patent RU 2404087, 20.11.2010
  2. Kernozhitsky V.A., Kolychev A.V., Okhochinsky D.M. Patent RU 2430857, 01.12.2009.
  3. Kernozhitsky V.A., Kolychev A.V., Okhochinsky D.M. Patent RU 95637, 25.02.2010.
  4. Kolychev A.V. Elektronnyi zhurnal «Trudy MAI», 2012, no 51, available at: http://www.mai.ru/science/trudy/eng/published.php?ID=29053 (accessed 26.03.2012).
  5. Kolychev A.V. Elektronnyi zhurnal «Trudy MAI», 2013, no 68, available at: http://www.mai.ru/science/trudy/eng/published.php?ID=41732 (accessed 03.09.2013).
  6. Kolychev A.V. Mountain V.V., Makarenko A.V. Denisenko A.A. Patent RU 132050, 29.04.2013.
  7. Ushakov B.A., Nikitin V.D., Yemelyanov I.Ya. Osnovy termoemissionnogo preobrazovaniya energii (Bases for thermionic transformation of energy), Moscow, Atomizdat, 1974, 288 p.
  8. Kvasnikov L.A., Kaybyshev V.Z., Kalandarishvili A.G. Rabochie protsessy v termoemissionnykh preobrazovatelyakh yadernykh energeticheskikh ustanovok (Working processes in thermionic transformation of nuclear power installations), Moscow, MAI, 2001, 208 p.
  9. Nikitin P.V. Teplovaya zashchita (Thermal protection), MAI, 2006, 512 p.
  10. Neyland V.Ya. Tumin A.M. Aerotermodinamika vozdushno-kosmicheskikh samoletov (Aerothermodynamics of aerospace planes), Zhukovsky, FALT MFTI, 1991, 201 p.
  11. Polezhayev Yu.V., Yurevich F.B. Teplovaya zashchita (Thermal protection), Moscow, Energy, 1976, 392 p.
  12. Avduyevsky S., Galitseysky B.M., Glebov G.A. Osnovy teploperedachi v aviatsionnoi i raketno-kosmicheskoi tekhniken (Heat transfer bases for aviation and aerospace engineering), Moscow, Mechanical engineering, 1992, 528 p.
  13. Wilson V.C., Podkulski S.P. Characteristics of a thermionic converter with a chloride vapor deposited tungsten emitter (110) and a nickel collector, NASA contractor report CR-1416, Washington, D.C. 1969, 41 p.
  14. Kemp, Riddell Nauchnye problemy iskusstvennykh sputnikov, Sbornik statei, Moscow, Inostrannaya literatura, 1959, pp. 297-319.
  15. Rose, Starck Problemy dvizheniya golovnoi chasti raket dal’nego deistviya. Sbornik statei, Moscow, Inostrannaya literatura, 1959, pp. 277-311.
  16. Askerov F.A., Atamasov V.D., Poletayev B.I. Kosmonavtika XXI veka i yadernye termoemissionnye energeticheskie ustanovki (Astronautics of the XXI century and nuclear thermionic power installations), Moscow, Nauka, 2001, 380 p.
  17. Leonov S.B. Control of Flow Structure and Ignition of Hydrocarbon Fuel in Cavity and behind Wallstep of Supersonic Duct by Filamentary DC Discharge, Final Project Technical Report AFRL-AFOSR-UK-TR-2010-0013, 2010.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход