Program «MITRA» for modeling of characteristics of onboard laser ranging systems of space vehicles

Material authority


Аuthors

Bojprav O. V.*, Borbotko T. V.**, Lynkov L. M.***

Belarusian State University of Informatics and Radioelectronics, BSUIR, P.Brovka str. 6, Minsk 220013, Belarus

*e-mail: boipravolga@rambler.ru
**e-mail: kafzi@bsuir.by
***e-mail: leonid@bsuir.by

Abstract

In this work it’s introduced the research results of interrelation between the electromagnetic radiation (EMR) reflection and transmission characteristics of shields with a flat and geometrically inhomogeneous surface shapes based on composite perlite containing materials and their surface temperature is studied. The dynamics of surface temperature specified EMR shields ranging from —18 °C to +18° C is obtained. It’s established that the EMR reflection coefficients values of these at their surface temperature +18 °C are
—4...—25 dB and EMR transmission coefficients values are —5...—27 dB in the frequency range 0,7...17 GHz. It’s shown that reduce of surface temperature of the studied EMR shields from +18 °C to —18 °C leads to the decreasing of their EMR reflection coefficients the values on 3...7 dB (for the shields with a flat surface shape) and 2...10 dB (for the shields with a pyramidal surface shape) with increasing EMR transmission coefficients values on 5...9 dB in the frequency range 0,7...13 GHz ( for shields with a flat surface shape) and 0,7...6 GHz (for shields with a pyramidal surface shape). Surface temperature of investigated EMR shields with a flat surface shape does not affect to the EMR reflection and transmission coefficients values in the frequency range of 13...17 GHz and shields with the pyramidal surface shape — in the frequency range of 6...17 GHz. It’s proposed to use the investigated EMR shields for the manufacture of protective housings equipment used in unheated areas, and composite materials used for their formation — for walls facing of shaded buildings.

Keywords:

gypsum, reflection coefficient, transmission coefficient, perlite, calcium chloride, electro-magnetic radiation

References

  1. Pirumov V.S., Alekseev A.G., Ajzikovich B.V. Zarubezhnaja radiojelektronika, 1994, no 6, pp. 2–8.
  2. Bojprav O.V., Borbot’ko T.V. Materialy X Mezhdunarodnoj nauchno-prakticheskoj konferencii «Upravlenie informacionnymi resursami», Minsk, 2013, pp. 124–125.
  3. Melkonjan R.G. Amorfnye gornye porody — novoe syr’e dlja steklovarenija i stroitel’nyh materialov (Amorphous rocks — new raw materials for glassmaking and construction materials), Moscow, NIA Priroda, 2002, 388 p.
  4. Volzhenskij A.V. Mineral’nye vjazhushhie veshhestva (Mineral knitting substances), Moscow, Strojizdat, 1986, 464 p.
  5. Chernyshov E.M., Shmit’ko E.I. Upravlenie processami tehnologii, strukturoj i svojstvami betonov (Management of technology processes, structure and properties of concrete: monograph), Voronezh, VGASU, 2002, 344 p.
  6. Vlijanie hlorida kal’cija na gidrataciju klinkernyh materialov, available at: http://betony.ru/dobavki/vliyanie-hlorida-kalciya.php (accessed 01.03.2014).
  7. Denisenko V. V zapisnuju knizhku inzhenera, 2012, no 3. pp. 96–98.
  8. Bojprav O.V., Borbot’ko T.V., Lyn’kov L.M., Sokolov V.B. Elektronnyi zhurnal «Trudy MAI», 2013, no 67, available at: http://www.mai.ru/science/trudy/published.php?ID=41430 (accessed 01.03.2014).
  9. Hlorid kal’cija i ego svojstva, available at: http://www.cniga.com.ua/index.files/calciumchloride.htm (accessed 01.03.2014).
  10. Grabar’ I.A., Al’hamruni Ali Abdalla Muhamed, Nasonova N.V., Poznjak A.A., Puhir G.A. Doklady BGUIR, 2013, vol. 77, no 7, pp. 96–101.
  11. Grudinskaja G.P. Rasprostranenie radiovoln (Distribution of radio waves), Moscow, Vysshaja shkola, 1975, 280 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход