Transmission of axial-symmetric superficial disturbances in the elastic-porous half-space

Mathematics. Physics. Mechanics


Аuthors

Karpov V. V.*, Semenov A. A.**, Kholod D. V.***

St. Petersburg State University of Architecture and Civil Engineering (SPbSUACE), 4, 2-nd Krasnoarmeyskaya str., Saint-Petersburg, 190005, Russia

*e-mail: vvkarpov@lan.spbgasu.ru
**e-mail: sw.semenov@gmail.com
***e-mail: darina_holod@mail.ru

Abstract

Purpose
Thin-walled shells are essential elements of many modern structures in various fields of engineering. The aim of this work is to study the strength of orthotropic thin shallow shells on the basis of a mathematical model, which takes into account lateral shifts, as well as the analysis of obtained results.
Design/methodology/approach
Modern materials (reinforced plastics, fiberglass, concrete, etc.) have a pronounced orthotropic property, i.e. material properties in various directions are different. Thus, to calculate the shells made of composite material often used theory orthotropic shells.
To examine the strength of the shell, it is necessary to analyze each loading step of stress-strain state of the structure. If for isotropic structure it is enough to evaluate the stress intensity, then for orthotropic and anisotropic it is necessary to compare the values of all the components of the stress with the limit values.
In this paper the results obtained with the help of geometrically linear version of shell mathematical model using an algorithm based on the Ritz method and iterative processes are presented.
Shown further solutions are obtained by holding the expansion of the unknown functions of 16 members by the Ritz method. Voltage values were calculated on the outer side of the shell.
Findings
For a variety of shell structures made of carbon fiber LU-P/ENFB, T300/Epoxy, M60J/Epoxy, T300/976 it is obtained the quantitative characteristics of strength and maximum permissible load required in the design of such structures. Results obtained by using the most accurate mathematical models of deformation of orthotropic shells taking into account the transverse shears. For considered shells, loss of strength occurs when voltage limit compression value achieved along the axis x.
Originality/value
The rapid development of technologies for the creation of composite materials allows to use their unique properties when creating shell structures: high strength, fire resistance, low corrosiveness, ease, etc. The renewed interest in the study of such structures is caused not only by the appearance of new advanced materials, but also by the development of computer technology, which allows to apply fairly accurate, time-consuming numerical methods and computational algorithms , as well as realistic visual technologies to present calculation results. Therefore, research in this area is quite relevant and justifiable work.

Keywords:

shell, orthotropy, carbon plastic, strength, shallow shells, lateral shifts

References

  1. Pikul V.V. K raschetu ustoychivosti anizotropnoy tsilindricheskoy obolochki prochnogo korpusa podvodnogo apparata, Vestnik Dalnevostochnogo gosudarstvennogo tekhnicheskogo universiteta, 2009, No.2, pp.98—105.
  2. Krivoshapko S.N. O vozmozhnostyakh obolochechnykh sooruzheniy v sovremennoy arkhitekture i stroitelstve, Stroitelnaya mekhanika inzhenernykh konstruktsiy i sooruzheniy, 2013, No.1, pp.51—56.
  3. Tomás A., Martí P. Shape and size optimisation of concrete shells, Engineering Structures, 2010, No.32, pp.1650—1658.
  4. Pimenta, P.M. and Wriggers P. New trends in thin structures: formulation, optimization and coupled problems (Series: CISM International Centre for Mechanical Sciences, Vol. 519), New York, US: Springer, 2010, 228 p.
  5. Reddy, J.N, Mechanics of laminated composite plates and shells: theory and analysis, London, GBR: CRC Press, US: BocaRaton, FL, 2004, 856 p.
  6. Sukhinin S.N. Prikladnyye zadachi ustoychivosti mnogosloynykh kompozitnykh obolochek, Moscow, FIZMATLIT, 2010, 248 p.
  7. Carrera E., Brischetto S. and Nali P., Plates and shells for smart structures: classical and advanced theories for modeling and analysis. London, GBR: John Wiley & Sons Ltd., 2011, 322 p.
  8. Lekhnitskiy S.G. Anizotropnyye plastinki, Moscow, Fizmatlit, 1957, 463 p.
  9. Ambartsumyan S.A. Teoriya anizotropnykh plastin, Moscow, Nauka, 1987, 360 p.
  10. Rikards R.B., Teters G.A. Ustoychivost obolochek iz kompozitnykh materialov, Riga, Zinatne, 1974, 310 p.
  11. Qatu, M.S., Sullivan, R.W. and Wang W., Recent research advances on the dynamic analysis of composite shells: 2000–2009, Composite Structures, 2010, Vol.93, pp. 14-31.
  12. Maksimyuk, V.A., Storozhuk, E.A. and Chernyshenko, I.S., Nonlinear deformation of thin isotropic and orthotropic shells of revolution with reinforced holes and rigid inclusions, International Applied Mechanics, 2013, Vol.49, No.6, pp. 685-692. DOI: 10.1007/s10778-012-0544-8
  13. Bolotin V.V., Moskalenko V.N. Plastiny i obolochki iz armirovannykh materialov. Osnovnyye uravneniya, kolichestvennyye rezultaty. — Dokl. nauchno-tekhn. konf. po itogam nauchno-issled. rabot MEI za 1966–67 gg., sektsiya energomash. Moscow, 1967.
  14. Maksimyuk V.A., Storozhuk E.A., Chernyshenko I.S. Nonlinear Deformation of Thin Isotropic and Orthotropic Shells of Revolution with Reinforced Holes and Rigid Inclusions, International Applied Mechanics, 2013, Vol. 49, Issue 6, pp. 685–692. DOI: 10.1007/s10778-013-0602-x
  15. Trach, V.M., Stability of conical shells made of composites with one plane of elastic symmetry, International Applied Mechanics, 2007, Vol.43, No.6, pp. 662-669. DOI: 10.1007/s10778-007-0065-z
  16. Lindgaard E., Lund E. A unified approach to nonlinear buckling optimization of composite structures, Computers & Structures, 2011, Vol. 89, issues 3–4, pp. 357–370.
  17. Karpov, V.V. and Maslennikov, A.M. Methods for solving non-linear tasks for calculating construction structures, World Applied Sciences Journal, 2013, No.23 (Problems of Architecture and Construction), pp. 178-183. http://idosi.org/wasj/wasj23%28pac%2913/35.pdf DOI: 10.5829/idosi.wasj.2013.23.pac.90035
  18. Atiskov A.Yu., Baranova D.A., Karpov V.V., Moskalenko L.P., Semenov A.A. Kompyuternyye tekhnologii rascheta obolochek, Saint-Petersburg, SPbGASU, 2012, 184 p.
  19. Aseyev A.V., Makarov A.A., Semenov A.A. Vizualizatsiya napryazhenno-deformirovannogo sostoyaniya tonkostennykh rebristykh obolochek, Vestnik grazhdanskikh inzhenerov, 2013, Vol.38, No.3, pp. 226–232.
  20. Maksimyuk V.A., Chernyshenko I.S. Smeshannyye funktsionaly v teorii nelineyno-uprugogo deformirovaniya obolochek, Prikladnaya mekhanika, Kiyev, 2004, Vol.40, No.11, pp. 45–83.
  21. Karpov V.V., Semenov A.A. Matematicheskaya model deformirovaniya podkreplennykh ortotropnykh obolochek vrashcheniya, Inzhenerno-stroitelnyy zhurnal, 2013, No.5, pp. 100–106.
  22. Kuznetsov Ye.B. Metod prodolzheniya resheniya i nailuchshaya parametrizatsiya, Moscow, MAI-PRINT, 2010, 160 p.
  23. Trushin S.I., Mikhaylov A.V. Ustoychivost i bifurkatsii gibkikh pologikh setchatykh obolochek, Vestnik NITs Stroitelstvo, 2010, No.2, pp. 150–158.
  24. Semenov A.A. Algoritmy issledovaniya prochnosti i ustoychivosti podkreplennykh ortotropnykh obolochek, Stroitelnaya mekhanika inzhenernykh konstruktsiy i sooruzheniy, 2014, No.1, pp.49-63.
  25. Karpov V.V., Semenov A.A., Kholod D.V. LinShell: linear calculation of shallow shells. Svidetelstvo o gosudarstvennoy registratsii programmy dlya EVM № 2013660432, RF ot 06.11.2013 g.
  26. Smerdov A.A., Buyanov I.A., Chudnov I.V. Analiz optimalnykh sochetaniy trebovaniy k razrabatyvayemym ugleplastikam dlya krupnogabaritnykh raketno-kosmicheskikh konstruktsiy, Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroyeniye, 2012, No.8, pp. 70–77.
  27. Tsepennikov M.V., Povyshev I.A., Smetannikov O.Yu. Verifikatsiya chislennoy metodiki rascheta razrusheniya konstruktsiy iz kompozitsionnykh materialov, Vestnik PNIPU. Prikladnaya matematika i mekhanika, 2012, No.10, pp. 225–241.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход