Mathematical modeling of electromagnetic process for gravitational wave channel of communication

Mathematica modeling, numerical technique and program complexes


Denisova I. P.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia



Gravitational waves are known to be one of the most wonderful predictions of Einstein’s Theory of General Relativity. In this theory the possibility of propagation metric tensor perturbations as waves follows from the hyperbolic Einstein’s equations.

However, for a long time, no attempt to detect gravitational waves or any trace of their existence succeeded. Therefore, in scientific literature, time to time, some doubts had been expressed about the existence of gravitational waves.

The situation changed dramatically after the observation of the double pulsar system PSR 1913+16 which began in 1975 and showed that the power is leaving the system for gravitational waves, as it had been forecasted in the General Theory of Relativity. However, the most convincing proof of the existence of gravitational waves was demonstrated in September 2015, when the LIGO Observatory registered a sufficiently powerful pulse of gravitational radiation. Therefore,

nowadays, the most significant task in the theory of gravity is the theoretical analysis of the processes which leads to emission, detection of gravitational waves, and finding the ways to practical mastering the gravitational-wave channel of communication.

In this paper we construct a mathematical model of the electromagnetic process for the emission of gravitational waves, generated during propagation of electromagnetic waves in a constant magnetic fields.

According to the mentioned in the article calculation, such processes lead to the high frequency gravitational waves emission and can be used to find a practical mastery of radio, microwave and optical frequency gravitational — wave channel. A direct calculation shows, that taking into account the curved shape of the front of electromagnetic-wave changes substantially the amplitude asymptotic (wave-function) which has been created by the gravitational waves. This fact should be taken into account for assessing the efficiency of an electromagnetic wave transformation into a gravitational one on astrophysical conditions, as well as in the calculation of laboratory sources of gravitational radiation.


mathematical modeling, gravitational waves, electromagnetic waves, Einstein equations, gravitational – wave channel


  1. Einshtein A. Sobranie nauchnykh trudov (Collection of scientific works), Moscow, Nauka, 1965, 700 p.

  2. Fok V. A. Teoriya prostranstva, vremeni i tyagoteniya (Theory of space, time and gravity), Moscow, Fizmatgiz, 1961, 504 p.

  3. Taylor J. H., Fowler L. A., McCulloh P. M. Measurements of general relativistic effects in the binary pulsar PSR 1913+16. Nature, 1979, V. 277, p. 437-440.

  4. B. P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, V. 116, P. 061102.

  5. Veber Dzh. Obshchaya teoriya otnositel’nosti i gravitatsionnye volny (General relativity and gravitational waves), Moscow, Izd-vo Inostrannoi literatury, 1962, 271 p.

  6. Kramer D. Tochnye resheniya uravnenii Einshteina (Exact solutions of Einstein’s equations), Moscow, Energoizdat, 1982, 376 p.

  7. Zakharov V.D. Gravitatsionnye volny v teorii tyagoteniya Einshteina (Gravitational waves in the theory of gravitation of Einstein), Moscow, Nauka, 1972, 210 p.

  8. Gertsenshtein M.E Zhurnal eksperimental’noi i teoreticheskoi fiziki, 1961, vol. 41, pp. 113-114.

  9. Landau L. D., Lifshits E. M.. — M.: Nauka, 1988. — 510 c. Landau L.D., Lifshits E.M. Teoriya polya (the field Theory), Moscow, Nauka, 1988, 510 p.

  10. Cooperstock F. I., The essence of gravitational waves and energy. International Journal of Modern Physics D 2015, Vol. 24, No. 12, P. 1543005.

Download — informational site MAI

Copyright © 2000-2024 by MAI