Numerical method for solving nonlinear boundary value problem for differential equations with retarded argument
Mathematica modeling, numerical technique and program complexes
Аuthors
*, **Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
*e-mail: mary.mai.8@yandex.ru
**e-mail: kuznetsov@mai.ru
Abstract
Considered the numerical solution of nonlinear boundary value problems for differential equations with delay by the false position method. Affecting the question of finding false position method’s parameter with more accurate methods of finding a number of possible parameter values and find the parameter in the case of solutions of a singularly perturbed equation. For more accurate location solutions and for finding all possible solutions used E. Lanaye’s parameter continuation method and the method of continuation with respect to the best parameter. The numerical studies demonstrate the advantage of using the described approach. In the case of solving a system of singularly perturbed equations using the false position method and the method of optimal parametrization it is possible to find all the solutions with the required accuracy, while other methods are not always possible to find all the solutions. Cauchy problem on each step of the the false position method solved by Runge-Kutta method of fourth order of accuracy. The suggested method of solution differential equation with retarded argument can be useful for solving tasks of mechanics of deformable solids, radiolocation, theory of automatic control.
Keywords:
differential equations with retarded argument, numerical Methods, false position method, method of continuation with respect to the best parameter, E. Lanaye’s parameter continuation methodReferences
-
Krasnosel’skij A.M., Vajnikko G.M., Zabrejko P.P., Rutitskii Ya.B., Stetsenko V.Ya. Priblizhennoe reshenie operatornykh uravnenii (Approximate solution of operator equations), Moscow, Nauka, 1969. — 456 p.
-
Bahvalov N.S, Zhidkov N.P., Kobelkov G.M. Chislennye metody (Numerical methods), Moscow, Nauka, 1987, 600 p.
-
Kamenskij G.A., Skubachevskij A.L. Linejnye kraevye zadachi dlya differencialno-raznostnyh uravnenij (Linear boundary value problems for differential-difference equations), Moscow, MAI, 1992, 190 p.
-
Krasnikov S.D., Kuznetsov E.B. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki, 2005, vol.45, no.12, pp. 2066 — 2076.
-
Shalashilin V.I., Kuznetsov E.B. Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya v prikladnoi matematike i mekhanike (Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics), Moscow, Editorial, 2003, 224 p.
-
Kuznetsov E.B., Leonov S.S. Trudy MAI, 2013, no. 65: http://www.mai.ru/science/trudy/published.php?ID=35927
-
Dmitriev S.S. Kuznetsov E.B. Vestnik Moskovskogo aviatsionnogo instituta, 2008, vol. 2, no. 2, pp. 36-44.
-
Karpov V.V., Semenov A.A., Holod D.V. Trudy MAI, 2014, no. 76: http://www.mai.ru/science/trudy/published.php?ID=49970
-
Danilin A.N., Kozlov K.S., Kuznecova E.L., Tarasov S.S. Trudy MAI, 2013, no. 64: http://www.mai.ru/science/trudy/published.php?ID=36556
- Kuznetsov E.B. Optimal parametrization in numerical construction of curve — Journal of the Franklin Institute. 2007. V. 344. P.658-671.
Download