Support of the functional stability of the board integrated computer systems

Computing machinery, complexes and computer networks


Аuthors

Vasilyev S. V.*, Demchuk V. A.**

Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia

*e-mail: stanislav-vas1986@mail.ru
**e-mail: vad_912@mail.ru

Abstract

Integrated computer system (ICS) operation in real conditions is associated with occurrence of various module failures, caused by destabilizing effects. The separate module failure herewith may lead to either system crash, or functioning in degraded performance mode, possible at the expense of reallocation of damaged module functions between the system good modules. One of possible system responses to failure consists in functional reconfiguration, while the system feature to keep the ability to fulfill its specified functions with required quality in conditions of functional failures is interpreted as functional stability.

ICS reconfiguration task in flight requires permanent monitoring of the system condition, and decision making on optimal ICS configuration according to a known rule. System reconfiguration capacity defines directly its functioning safety and the task performance quality as a whole. Redundant resources available in the system define the above said abilities while of failure occurrence. Thus, the task of optimal (rational) ICS structural synthesis at the stage of design with restrictions on employed resources seems to be topical. The paper envisages algorithm of optimal distribution of aircraft ICS at the design stage, ensuring maximum level of functional system stability during failures under operation.

For this purpose, the system structure is represented in the form of marked oriented weighed multigraph, which peaks match the system modules, while its arcs match the functions, executed by the given units. Such functions are defined as internal. The external functions call, or the system tasks, are determined as some assemblage of possible paths in the column for each external function.

ICS structure representation in the form of the weighed digraph allows examine various versions of ICS structure in the condition of degradation, that is, a certain unit inability to execute specified function. Degradation leads to removal the ribs matching the given function from the column. Thus, the approach, which allows examine in-process the effect of units’ failures on operability of the remaining intact is offered. It means that the capability of functional links registration between the units, specific to hardware systems is employed.

Resources redistribution within the limits of the offered algorithm is examined in two ways. Firstly, it is oriented on reaching external functions calls maximum execution quality at a runtime environment of everything not below the specified level. Secondly, it assumes redistribution of hardware-software means corresponding to a maximum execution quality of critical external functions calls. Selection of optimal ICS structure within the limits of the accepted strategy of resources redistribution is determined by optimization. In-process two criteria are offered (a survivability index, a figure of merit), which applicability is determined by singularities of particular ICS.

The paper presents the results of numerical simulation.

The offered algorithm can be used at the ICS design stage to meet the requirements on fail safety and survivability.

Keywords:

flying vehicle integrated computer system, functional stability, functional failure, degradation, multigraph

References

  1. European Commission, «European Aeronautics: A Vision for 2020», January 2001.

  2. ACARE, «Strategic Research Agenda», October 2002.

  3. European Commission, «FlightPath 2050. Europe’s Vision for Aviation», 2011.

  4. ACARE, «Strategic Research and Innovation Agenda», September 2012.

  5. Chuyanov G.A., Kos’yanchuk V.V., Sel’vesyuk N.I. Izvestiya YuFU. Tekhnicheskie nauki, 2013, no. 03(140), pp. 55-62.

  6. Arshakyan A.A., Makaretskii E.A., Shishkov A.A. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2013, no. 6-2, pp. 161-169.

  7. Brodskii A.V. Trudy MAI, 2013, no. 71: http://www.mai.ru/science/trudy/published.php?ID=47068

  8. Semagin A.A., Churkin G.M. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta, 2010, no. 3(51), pp. 95-98.

  9. Borodakii Yu.V., Tarasov A.A. Informatsionnoe protivodeistvie ugrozam terrorizma, 2006, no. 7, pp. 79-93.

  10. Lebedev G.N., Sinevich G.M., Mikhailin D.A. Vestnik VGU. Seriya «Sistemnyi analiz i informatsionnye tekhnologii», 2016, no. 2, pp. 11-15.

  11. Tarasov A.A. Funktsional’naya rekonfiguratsiya otkazoustoichivykh sistem: monografiyayu (Functional reconfiguration of failure-resistant systems: the monography), Moscow, Logos, 2012, 152 p.

  12. Zakharov I.V., Trubnikov A.A., Reshetnikov D.A. Vestnik Moskovskogo aviatsionnogo instituta, 2015, vol. 22, no. 2, pp. 66-73.

  13. Oleinikov I.I., Pavlov V.P., Kovaleva M.V. Vestnik Moskovskogo aviatsionnogo instituta, 2012, vol. 19, no. 5, pp. 32-37.

  14. Pokhil V.S., Kharybin A.V. Radioelektronnye i komp’yuternye sistemy, 2010, no. 7 (48), pp. 278-282.

  15. Obukhov Yu.V., Popov A.S., Orlov A.S., Kotova A.O. Trudy MAI, 2015, no. 81: http://www.mai.ru/science/trudy/published.php?ID=57729

  16. Mink H. Permanents. Addison-Wesley, Reading, 1978.

  17. Berge C. The Theory of Graphs and its Applications. Published by Methuen & Co, 1962.

  18. Ore O. Graphs and Their Uses, Random House, Inc., New York, 1963.

  19. Gantmacher F.R. The theory of matrices. Chelsea Publishing Company, New York, 1959. Vol. 1 — 374 p., vol. 2 — 277 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход