Control algorithm to automatic perform the avoidance maneuver from collision with terrain

Dynamics, ballistics, movement control of flying vehicles


Аuthors

Evdokimchik E. A.

Russian Aircraft Corporation «MiG», 7, 1st Botkinsky passage, Moscow, 125284, Russia

e-mail: obstwasser@mail.ru

Abstract

A controlled flight into terrain remains a serious problem for the commercial and military aircraft. It is difficult for a pilot to adequately estimate the degree of maneuverability and safety on a modern maneuverable aircraft. To improve the flight safety applies systems which warns the pilot of the ground proximity and performs an automatic collision avoidance maneuver in case of security threats.

The article deals with the control algorithm for performance of the automatic maneuvers intended to avoid collision with the ground. The proposed algorithm is designed for the aircraft with control loops of g-load and roll angle.

A collision avoidance maneuver is divided into two phases. The first phase is focused on stopping the descent of the aircraft. The goal of the second phase is the safely transfer control of the aircraft to the pilot. The first phase of maneuver can be performed by using two control strategies. The first control strategy consists of a roll to wings level combined with performing a desired g-load. Desired g-load is negative when roll angle more than the point ahead angle and positive in other case. The point ahead angle depend on the ratio of performances of g-load and roll angle control loops. The recommendation for chose the point ahead angle for a particular aircraft is given. The second control strategy is to perform aerobatic figure, called “overturn”. The control algorithms of vertical flight speed and altitude to execute the second phase of the avoidance maneuver is designed. The logic for perform avoidance maneuver and block diagram of the control algorithm is created.

Keywords:

control algorithm, automatic maneuver intended to avoid collision with the ground

References

  1. Aviation occurrence categories, CAST/ICAO Common Taxonomy Team, available at: http://www.intlaviationstandards.org/Documents/OccurrenceCategoryDefinitions.pdf (accessed 14.12.2015).

  2. Altmann H. Patent US 4058710, 15.11.1977.

  3. Gregory W. Bice, Mark A. Skoog, John D. Howard. Patent US 4924401, 08.05.1990.

  4. Evdokimchik E.A. Trudy MAI, 2015, no. 80: http://www.mai.ru/science/trudy/eng/published.php?ID=56895

  5. Evdokimchik E.A. Mekhatronika, avtomatizacija, upravlenie, 2016, no. 7, pp. 492-498.

  6. Lebedev A.A., Chernobrovkin L.C. Dinamika poleta bespilotnykh letatel'nikh apparatov (Flight dynamics of pilotless flight vehicles), Moscow, Mashinostroenie, 1973, 616 p.

  7. Bjushgens G.S., Studnev R.V. Dinamika samoleta. Prostranstvennoe dvizhenie (The dynamics of the aircraft. Spatial movement), Moscow, Mashinostroenie, 1983, 320 p.

  8. Gill F., Mjurrej U., Rajt M. Prakticheskaja optimizacija (Practical optimisation), Moscow, Mir, 1985, 509 p.

  9. Vorob'ev A.V., Kulikov V.E. Zalesskij S.E., Shtejngard B.H., Murashov G.A., Penskij P.N. Patent RU 2326788 C1, 20.06.2008.

  10. Mihalev I.A., Okoemov B.N., Pavlina I.G., Chikulaev M.S., Kiselev Ju.F. Sistemy avtomaticheskogo i direktornogo upravlenija samoletom (Automatic and director control systems of airplane), Moscow, Mashinostroenie, 1974, 232 p.

  11. Vorob'ev A.V., Kulikov V.E. Zalesskij S.E., Shtejngard B.H., Murashov G.A., Penskij P.N. Patent RU 2325305 C1, 27.05.2008.

  12. Aleshin B. S., Antonov D. A., Veremeenko K. K., Zharkov M. V. Trudy MAI, 2012, no. 54: http://www.mai.ru/science/trudy/eng/published.php?ID=29823


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход