Program code developpment experience based on Galerkin method with discontinuous basic functions of high order of accuracy

Mathematica modeling, numerical technique and program complexes


Аuthors

Podaruev V. Y.

Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

Abstract

The paper enunciates the experience of developing the software based on the Galerkin method with discontinuous basis functions of high accuracy. The purpose of the work consists in describing the specifics of of the program code developing intended for use on a multiprocessor computer system. The methodollogy of the work is based on the modern approach to simulation of complicated 3D flows using Galerkin scheme with discontinuous basis functions. The methodology of this work execution includes theoretical analysis of the method, application of modern approaches to programming, verification and validation of employed ideas and demonstration of the developed code’s suitability for complicated nonlinear calculations. The result of the work are recommendations for the software developing based on modern methods of computational aerodynamics.

To develop a software interface for specific codes, it is convenient to use the Python programming language. Before proceedeing to descring the computational domain topology, the calculated grid type (structured or unstructured) should be defined. It is necessary to determine what types of geometric objects are to be worked with. In the case of “serendipian” elements, the desired order of the problem approximation should be selected and the elements for linear, quadratic, cubic, etc. cases should be identified, with further changing only the sets of shape functions, characteristic to the specified elements. It is convenient herewith to realiize these sshape functions in the form of the so-called “lambda” functions included in the C++ standard.

The results of this work can be applied for educational purposes in technical universities and in practical works on developing new software in scientific institutes and design offices. The main conclusion of the paper is that a high-order scheme allows diminish entropic errors while calculating the flow after stagnant zones, as well as calculate all the flow specifics, which are characteristic for flow around the high-lift wing with released slats and flaps. Modern programming approaches allow ensure the high code scalability. In addition, the main features of the Galerkin method with discontinuous functions, such as reconstruction of conservative variables, the approximation of convective, diffusion and source terms, Gaussian quadratures, with account for the surface curvature, coordinate transformations using “serendipian” elements, are briefly described.

Keywords:

discontinuous Galerkin Method, basic functions, high order, supercomputer, verification, validation, high-lift wing

References

  1. Shu C.-W. High Order Finite Difference and Finite Volume WENO Schemes and Discontinuous Galerkin Methods for CFD. International Journal of Computational Fluid Dynamics, 2003, vol. 17, no. 2, pp. 107-118.

  2. Nogueira X., Cueto-Felgueroso L., Colominas I., Gómez H., Navarrina F., Casteleiro M. On the accuracy of finite volume and discontinuous Galerkin discretizations for compressible flow on unstructured grids. International Journal for Numerical Methods in Engineering, 2009, vol. 78, no. 13, pp. 1553–1584.

  3. Shu C.-W., Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes, I. Journal of Computational Physics, 1988, vol. 77, no. 2, pp. 439–471.

  4. Shu C.-W., Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. Journal of Computational Physics, 1989, vol. 83, no. 1, pp. 32–78.

  5. Zhang R., Zhang M., Shu C.W. On the order of accuracy and numerical performance of two classes of finite volume WENO schemes. Communications in Computational Physics, 2011, vol. 9, no. 3, pp. 807–827.

  6. Balsara D.S., Shu C.-W. Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy. Journal of Computational Physics, 2000, vol. 160, no. 2, pp. 405–452.

  7. Titarev V., Toro E. Finite-volume WENO schemes for three-dimensional conservation laws. Journal of Computational Physics, 2004, vol. 201, no. 1, pp. 238–260.

  8. Bassi F., Rebay S. A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier—Stokes Equations. Journal of Computational Physics, 1997, vol. 131, no. 2, pp. 267–279.

  9. Cockburn B., Shu C.-W. The Runge—Kutta Discontinuous Galerkin Method for Conservation Laws V. Journal of Computational Physics, 1998, vol. 141, no. 2, pp. 199‑224.

  10. Volkov A. Uchenye zapiski TsAGI, 2010, vol. XLI, no. 3, pp. 52-68.

  11. Arnold D.N., Awanou G. The Serendipity Family of Finite Elements. Foundations of Computational Mathematics, 2011, vol. 11, no. 3, pp. 337–344.

  12. Bassi F., Botti L., Colombo A., Di Pietro D.A., Tesini P. On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. Journal of Computational Physics, 2012, vol. 231, no. 1, pp. 45–65.

  13. Bassi F., Rebay S., Mariotti G., Pedinotti S., Savini M. A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics. Antwerpen, Belgium, 1997, pp. 99–109.

  14. Gottlieb S., Shu C.-W., Tadmor E. Strong Stability-Preserving High-Order Time Discretization Methods. SIAM Review, 2001, vol. 43, no. 1, pp. 89–112.

  15. Gubskii V.V. Trudy MAI, 2013, no. 68, available at: http://trudymai.ru/eng/published.php?ID=41737

  16. Christopher Rumsey, NASA Langley Research Center, The 1st AIAA CFD High Lift Prediction Workshop (HiLiftPW-1), 2017, available at: http://hiliftpw.larc.nasa.gov/index-workshop1.html


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход