Methodology for aircraft rational control law forming while performing maneuvers in horizontal plane

Dynamics, ballistics, movement control of flying vehicles


Enkin A. A.

MESC Air Force “Air Force Academy named after professor N.E. Zhukovskii and Yu.A. Gagarin”, 54a, Starykh bol'shevikov, Voronezh, 394064, Russia



The article presents the methodology for agile aircraft rational controls forming while executing a turn in horizontal plane. The flight of an agile light airplane is selected as an object of study. While solving the problem of rational trajectories selection provisions of the direct variation method were assumed as a basis. The existing techniques, where the reference trajectory is set as dependence of phase coordinates from the physical time in the form of a polynomial, exhibit a significant drawback. This dependence of an aircraft speed from the trajectory geometry, i. e. time derivatives of coordinates, uniquely determine the speed at each point of the trajectory. A distinctive feature of the proposed methodology from the existing one is the aircraft control laws forming method. Control functions for aircraft roll and normal speed overload herewith are determined from the required accelerations for monitoring reference trajectory, specified in the form of polynomial dependence of phase coordinates from time. Tangenital overload control is formed on the assumption of specifics of maneuvering in horizontal plane. These features consist in the existence of a certain flight speed, at which maneuvering in horizontal plane is performed with maximum angular rate of turn. The degree of approaching this rate herewith is determined by the moment of the engine operation mode switching, and ensures the possibility of fuller realization of aircraft performance characteristics inherent to its structure (maneuvering characteristics).

Thus, the developed methodology ensures the accounting for maneuvering specifics in horizontal plane while forming an aircraft speed mode control, and allows eliminate the “stiff” dependence of flight speed from the trajectory geometry. It allows also determine the rational trajectory of the combat maneuvering in the horizontal plane, by which high levels of maneuverability inherent to the aircraft structure are achieved.

Application of this methodology is possible while developing the systems of intellectual support for a pilot’s decision-making, as well as aircraft automatic control systems.


aircraft, flight dynamics, control law, maneuvering in the horizontal plane


  1. Fedunov B.E. Trudy pyatnadtsatoi natsional’noi konferentsii po iskusstvennomu intellektu. Sbornik statei, Smolensk, 03-07 oktyabrya 2016, pp. 212 – 219.

  2. Arkhipova O.V. Trudy MAI, 2012, no. 62, available at:

  3. Kai Virtanen. Optimal pilot decisions and flight trajectories in air combat. Helsinki University of Technology. Systems Analysis Laboratory Research Reports, 2005, 32 p.

  4. Nelyubov A.I. Letnye kharakteristiki i boevoe manevrirovanie letatel’nykh apparatov. Matematicheskie metody rascheta boevykh manevrov, vzleta i posadki samoletov s povorotom vektora tyagi dvigatelei (Flight characteristics and combat maneuvering of aircraft. Mathematical methods of calculation combat maneuvers, take-off and landing aircraft with a rotation of the vector thrust engines), Moscow, VVIA im. Zhukovskogo, 1986, 37 p.

  5. Ikryannikov E.D., Is’ko A.S., Levitskii S.V., Matveev A.I., Podobedov V.A., Popovich K.F., Rudenko L.V. Samolet Yak-130UBS. Aerodinamika i letnye kharakteristiki (Aircraft Yak-130UBS. Aerodynamics and flight characteristics), Moscow, Mashinostroenie, 2015, 348 p.

  6. Tarasenkov A.M., Braga V.G., Taranenko V.T. Dinamika poleta i boevoe manevrirovanie letatel’nykh apparatov (Flight dynamics and combat maneuvering of aircraft), Moscow, VVIA im. Zhukovskogo, 1984, 508 p.

  7. Golovnev А.V., Enkin А.А., Venikov D.U. Trudy FGUP NPCAP, 2017, no. 1, pp. 64 – 66.

  8. Taranenko V.T., Momdzhi V.G. Pryamoi variatsionnyi metod v kraevykh zadachakh dinamiki poleta (Direct variational method in boundary problems of flight dynamics), Moscow, Mashinostroenie, 1986, 128 p.

  9. Batenko A.P. Sistemy terminal’nogo upravleniya (System terminal control), Moscow, Radio i svyaz’, 1984, 160 p.

  10. Andronov A.A., Vitt A.A., Khaikin S.E. Teoriya kolebanii (Theory of oscillations), Moscow, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1981, 568 p.

  11. Levickii S.V., Sviridov N.A. Dinamika poleta (Flight dynamics), Moscow, VVIA im. Zhukovskogo, 2008, 527 p.

  12. Mednikov V.N. Dinamika poleta i pilotirovanie samoletov (Flight dynamics and piloting aircraft), Monino, VVA im. Gagarina, 1976, 547 p.

  13. Kiselev M.A. Izvestiya RAN. Teoriya i sistemy upravleniya, 2007, no. 5, pp. 150 – 160.

  14. Bortakovskii A.S., Pegachkova E.A. Trudy MAI, 2007, no. 27, available at:

Download — informational site MAI

Copyright © 2000-2021 by MAI