Signals filtration at low-frequency interference in unmanned flying vehicles measuring-information systems

Information and measuring and control systems


Аuthors

Bukhalev V. A.1*, Boldinov V. A.2**

1. Moscow research television Institute, 7a, str. Golyanovskaya, Moscow, 105094, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: vadim.bukhalev@yandex.ru
**e-mail: viktorboldinov@mail.ru

Abstract

The authors consider the problem of information processing in measuring information systems of unmanned aerial vehicles’ (UAV) at low-frequency interference. As a rule, the classical approach to solution of the problem of low-frequency interference filtering proves to be unusable due to the estimates divergence. The authors propose to solve the put forward problem by employing optimal filters realizing the «interference whitening». The thus obtained mixture of valid signal with white noise

The suggested algorithm of optimum filtering consists in preliminary passing-through of a measuring instrument output signal through the forming wideband filter. The thus obtained mixture of a valid signal with white noise is fed to low-frequency filter forming an optimum valid signal estimation.

The structure and parameters of the synthesized filter depend on the nature of the low-frequency interference in the measurement channel. As a rule, intensity of UAV’s trajectory fluctuations can be considered as approximate constant and not depending on UAV control system type. On the contrary, dispersion of noise disturbance, may either increase, or decrease while UAV approaching an object. The nature of the organized interference depends on jammer actions.

The optimum filtration algorithm has been constructed for both cases. The disadvantage of the proposed approach is the unjustified complexity of optimal algorithms implementation for solving applied problems.

The main problem consists in an adequacy of the developed mathematical model (linearity, a small order of the equations, unauthenticity of basic data and other) to the real system under study. It feels particularly sharp while creating the UAV navigation and guidance algorithms with their tight restrictions on speed and memory of the onboard computer.

One of the effective ways to solve this problem is to replace the differential equations for the coefficients that determine the passband of the optimal filter by their steady values, calculated by algebraic formulas obtained from differential equations.

The simulation obtained results allow draw conclusions on the applicability of the proposed approach to filtration problems in the opto-electronic and radio engineering measuring information systems of UAV. In this case, the accuracy of angular coordinates estimating of the object of observation will decrease by 10–15% of the true values.

Keywords:

measuring-information system, information recognition and estimation, low-frequency interference, white noise, optimal filtration

References

  1. Klyuev A.V., Yakimov A.V. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2007, no. 6, pp. 52 – 55.

  2. Nikol’skii B.A. Metody i sredstva radioelektronnoi zashchity letatel’nykh apparatov (Methods and means of radio electronic defense of aircrafts), Samara, Samara state aerospace university, 2004, 110 p.

  3. Shatovkin R.R., Antipenskii R.V., Tashkov S.A., Shestakov P.A., Danilov S.N. Vozdushno-kosmicheskie sily. Teoriya i praktika, 2017, no. 1, pp. 15 – 28.

  4. Kapitanov V.V., Koziratskii A.Yu., Parinov M.L., Tsipenyuk V.N. Materialy XIV Mezhdunarodnoi nauchno-metodicheskoi konferentsii “Informatika: problemy, metodologiya, tekhnologii”, Voronezh, 2014, issue 1, pp. 393 – 377.

  5. Bubnova M.D., Shishkin G.G. Moskovskaya molodezhnaya nauchno-prakticheskaya konferentsiya “Innovatsii v aviatsii i kosmonavtike – 2015”. Sbornik tezisov, Moscow, 2015, pp. 105 – 106.

  6. Braison A.E., Kho Yu-shi. Prikladnaya teoriya optimal’nogo upravleniya (Applied theory of optimal control), Мoscow, Mir, 1972, 544 p.

  7. Bukhalev V.A. Optimal’noe sglazhivanie v sistemakh so sluchainoi skachkoobraznoi strukturoi (The optimal smoothing in the systems with random jump structure), Мoscow, Fizmatlit, 2013, 188 p.

  8. Ivanov V.P. Trudy voenno-nauchnoi konferentsii “Robotizatsiya Vooruzhennykh Sil Rossiiskoi Federatsii”, Moscow, 2016, issue 1, pp. 358 – 365.

  9. Amenitskiy M.V. Trudy MAI, 2017, no. 94, available at: http://trudy.mai.ru/eng/published.php?ID=81066

  10. Assaulov I.Yu. 15-ya Mezhdunarodnaya konferentsiya “Aviatsiya i kosmonavtika – 2016”. Tezisy dokladov. Moscow, 14–18 noyabrya 2016. pp. 439 – 440.

  11. Bukhalev V.A. Osnovy avtomatiki i teorii upravleniya (Basics of automation and control theory), Мoscow, VVIA imeni N.E. Zhukovskogo, 2006, 406 p.

  12. Bukhalev V.A. Obrabotka informatsii i upravlenie raketami v usloviyakh protivodeistviya (Information processing and missiles control in conditions of counteraction), Мoscow, Voenno-vozdushnaya akademiya imeni N.E. Zhukovskogo and Y.A. Gagarina, 2009, 146 p.

  13. Al’bokrinova A.S., Grumondz V.T. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 2, pp. 79 – 85.

  14. Sovmestimost’ tekhnicheskikh sredstv elektromagnitnaya. Elektromagnitnaya obstanovka. Klassifikatsiya elektromagnitnykh pomekh v mestakh razmeshcheniya tekhnicheskikh sredstv. GOST R 51317.2.5-2000 (Electromagnetic compatibility of technical means. Electromagnetic situation. Classification of electromagnetic interference in the places of technical facilities location, State Standard 51317.2.5-2000), Moscow, Standarty, 2001, 40 p.

  15. Achil’diev V.M., Gruzevich Yu.K., Soldatenkov V.A. Informatsionnye izmeritel’nye i optiko-elektronnye sistemy na osnove mikro- i nanomekhanicheskikh datchikov uglovoi skorosti i lineinogo uskoreniya (Information measuring and optoelectronic systems based on micro- and nanomechanical angular velocity and linear acceleration sensors), Мoscow, MGTU im. N.E. Baumana, 2016, 264 р.

  16. Bukhalev V.A., Boldinov V.A., Sukhachev A.B., Shapiro B.L. Informatsionno-izmeritel’nye i upravlyayushchie sistemy, 2016, no. 5, pp. 36 – 42.

  17. Boev S.F., Zyuzin A.V., Kostrykin P.A., Khaibutov K.E., Khaibutov M.E. Trudy MAI, 2017, no. 94, available at: http://trudy.mai.ru/eng/published.php?ID=81121

  18. Mikhnenko P.A. Upravlyaemye aviatsionnye rakety. Radiolokatsionnye sistemy samonavedeniya upravlyaemykh aviatsionnykh raket (Guided aviation rockets. Radar-tracking systems of guided aviation rockets), VVIA imeni N.E. Zhukovskogo, 2003, 195 p.

  19. Lavrov A.A., Nikonenko A.V. Trudy 1-oi voenno-nauchnoi konferentsii “Robotizatsiya Vooruzhennykh Sil Rossiiskoi Federatsii”, Moscow, 2016, issue 1, pp. 379 – 383.

  20. Egorov V.V. Moskovskaya molodezhnaya nauchno-prakticheskaya konferentsiya “Innovatsii v aviatsii i kosmonavtike – 2015”. Sbornik tezisov dokladow, Moscow, 2015, pp. 121 – 122.


Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход