Some specifics of Blasius problem solutions

Aerodynamics and heat-exchange processes in flying vehicles


Pokrovskiy A. N., Dadashov C. M.*

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia



The presented work performed numerical study of solutions behavior of laminar incompressible boundary layer on a flat plate (Blasiumo problem). It is common knowledge that Blasius proposed a statement of the problem as applied to a flat plate, except for the leading and trailing edges, allowing obtain the plate resistance with an adequate degree of accuracy. In this article, the authors outline four typical types of plates to refine the statement of the problem, and eliminate some inaccuracies being assumed in the previous statements of the problem.

In this paper, the authors conclude that new advanced methods serve the purposes of ensuring an aircraft optimal design and upgrading its performance characteristics. To this effect, it is necessary to improve conventional and develop new methods for aerodynamic characteristics computing with improved accuracy by accounting for viscous effects significantly affecting the aircraft characteristics and dynamics of its motion.

The authors tackle such issues, as a plate’s nose meltback commencing at supersonic flight speeds due to the impossibility of removing of large heat quantity, released in a flow, through the plate nose. In this respect, the authors analyze the succession of the problem statement on triangle strip flow-around by a supersonic airflow, from an idealized infinitely small to really blunted one.

Four approaches to employing various models for the problem solution on resistance of the plates and blunted wedge were examined. Two characteristic plates’ types, namely geometric and physical, are examined.

A method for computing resistance of the plates and blunted wedge, applying programs, was proposed. To compute the plate resistance, the authors show the necessity to compute the friction coefficient with LAYER-2 program, as well as resistance of the cylinder contamination and bottom pressure. Cxpl is computed for both laminar and turbulent layers with account for the friction resistance coefficient Cxfr , coefficient of cylinder blunting resistance Cxbl and bottom pressure coefficient Cxbot :

Сxpl = Cxfr + Cxbl + Cxbot

In conclusion, it is noted that LAYER-2 program application enabled computing resistance of these plates with improved accuracy, including all components of total resistance:


Сwклина = Cxзат + Cxтр + Cxдон + Cxклина



boundary layer, skin friction coefficient on various flat plates


  1. Shlikhting G. Teoriya pogranichnogo sloya (The boundary layer theory), Moscow, Nauka, 1974, 712 p.

  2. Loitsyanskii L.G. Laminarnyi pogranichnyi sloi (Laminar boundary layer), Moscow, Fizmatlit, 1962, 480 p.

  3. Chernyi G.G. Vliyanie malogo zatupleniya perednego kontsa tela na ego obtekaniya potokom s bol’shoi sverkhzvukovoi skorost’yu (Effect of slight blunting of a body’s front end on its flow-around by a stream with large supersonic velocity), Moscow, Nauka, 2009, 759 p.

  4. Dem’yanov Yu.A. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki, 1969, vol. 7, no. 4, pp. 894 – 907.

  5. Pokrovskii A.N., Shmanenkov V.N. Kosmonavtika i raketostroenie, 2016, no. 4, pp. 118 – 124.

  6. Golubev A.G., Kalugin V.T., Lutsenko A.Yu. et al. Aerodinamika (Aerodynamics), Moscow, Izd-vo MGTU im. N.E. Baumana, 2010, 687 p.

  7. Lipnitskii Yu.M., Krasil’nikov A.V., Pokrovskii A.N., Shmanenkov V.N. Nestatsionarnaya aerodinamika ballisticheskogo poleta (Non-stationary aerodynamics of ballistic flight), Moscow, Fizmatlit, 2003, 176 p.

  8. Petrov A.G. Analiticheskaya gidrodinamika (Analytical hydrodynamics), Moscow, Fizmatlit, 2010, 520 p.

  9. Lamb G. Gidrodinamika (Hydrodynamics), Moscow – Izhevsk, OGIZ, 2003, vol. 1. – 452 p., vol. 2. – 482 p.

  10. Na T.Y. Computational methods in engineering boundary value Problems, New York, Academic Press, 1980, 346 p.

  11. Shvets A.I., Shvets I.G. Gazodinamika blizhnego sleda (Near-earth gas dynamics), Kiev, Naukova Dumka, 1976, 353 p.

  12. Pokrovskii A.N. Mekhanika zhidkosti i gaza, 1975, no. 3, pp. 143 – 146.

  13. Lunev V.V. Techenie real’nykh gazov s bol’shimi skorostyami (Real gases flow with high velocities), Moscow, Fizmatlit, 2007, 760 p.

  14. Paul K. Chang. Separation of Flow, New York, Pergamon Press, 1970, 777 p.

  15. Pokrovskii A.N., Frolov L.G. Kosmonavtika i raketostroenie, 2002, no. 2, 89 – 99 p.

  16. Cebeci T., Smith A.M.O. Analysis of turbulent boundary layers, New York, Akademic Press, 1974, 404 p.

  17. Pokrovskiy A.N. Resheniye uravneniy Blaziusa dlya szhimayemogo gaza pri razlichnykh granichnykh usloviyakh // Materialy KHKH shkoly-seminara “Aerodinamika letatel’nykh apparatov”, p. Volodarskogo, Moskovskaya obl., 26-27 fevralya 2009 g. S. 107–108.

  18. Chernyi G.G. Gazovaya dinamika (Gas dynamics), Moscow, Nauka, 1988, 424 p.

  19. Slezkin N.A. Dinamika vyazkoi neszhimaemoi zhidkosti (Dynamics of a viscous incompressible fluid), Moscow, Izd – vo tekhniko – teoreticheskoi literatury, 1955, 520 p.

  20. Rothmayer A.P. Supersonic break away separation past a adiabatic wavy wall, AIAA Journal, 1988, vol. 36, no. 4, pp. 571 – 577.

  21. Reda D.C., Wilder M.C., Prabhu D.K. Transition experiments on slightly blunded cones with distributed roughness in hypersonic flight, AIAA Journal, 2012, vol. 50, no. 10, pp. 2248 – 2254.

  22. Probst A., Radespiel R., Rist V. Linear–Stability–Based transition Modeling for aerodynamic flow simulations with a Near–Wall Reynolds-Stress Model, AIAA Journal 2012, vol. 50, no. 2, pp. 416 – 428.

  23. Park G., Sudhir L.G., Needly A.J. Laminar near wake of a cylinder at hypersonic speed, AIAA Journal, 2010, vol. 48, no. 1, pp. 236 – 248.

  24. Volkov V.A., Semenov V.V., Sidkhu Dzhunior S.S. Trudy MAI, 2017, no. 93, available at:

  25. Garipova L.I., Batrakov A.S., Kusyumov A.N. Trudy MAI, 2017, no. 95, available at:

Download — informational site MAI

Copyright © 2000-2021 by MAI