Prospects of a three-flow technology application in conditions of supersonic flight

Thermal engines, electric propulsion and power plants for flying vehicles


Ezrokhi Y. A.*, Drygin A. S.**, Kizeev I. S.**, Selivanov O. D.***, Fokin D. B.****

Central Institute of Aviation Motors named after P.I. Baranov, CIAM, 2, Aviamotornaya str., Moscow, 111116, Russia



The article presents the results of the third loop application possibility estimating to enhance the engine and power plant characteristics in the range of the large supersonic flight speeds. The authors consider various possible options of three-flow turbojet engine schemes with combustion chamber, as well as tackle the issues of the third loop control.

In the course of this work, a new critical unit of the three-flow turbojet engine was revealed. This is a three-flow mixer. The coefficient of total pressure additional losses while mixing was computed for one of its possible designs.

Computations of the two-flow turbojet engine with afterburner with take-off thrust of 98 kN, assumed as a basic, and its possible modification, employing the third loop technology, were performed. Due to the additional losses while mixing significant effect on the characteristics being obtained, computations of a three-flow turbojet engine were performed with the values of the above said losses of 0 and 7%.

Comparative evaluations of characteristics of power plants options with the two-flow and three-flow turbojet engines as parts of a supersonic aircraft were performed. The aircraft take-off weight variation was accounted for in association with the engine weight increase while the rest components remained the same. While meeting the requirements to the equal take-off thrust-to-weight ratio, the computations with various additional losses level in the combustion chamber were performed.

The obtained results demonstrate that application of the third contour technology with all three contours’ streams mixing prior to the combustion chamber potentially allows increase the engine thrust in flight modes with large supersonic speeds (М = 2,2–2,8) and, accordingly, the maximum altitude (ceiling) and flight speed, thereby considerably expand an application range of the gas turbine engine.


dual-flow turbojet engine, third-flow technology, supersonic aircraft


  1. GE Aviation starts ADVENT core testing for the USAF. Airforce technology, available at:

  2. AEDC tests three-stream adaptive engine for Pratt & Whitney // Aerotech News & Review // Journal of Aerospace and Defense Industry News, available at:

  3. Gareth Evans. Speed and efficiency: are adaptive jet engines the way forward? Airforce technology, available at:

  4. Pratt & Whitney continues adaptive engine breakthroughs. Aerotech News & Review, Journal of Aerospace and Defense Industry News, 2017, vol. 31, issue 17, pp. 10.

  5. Drygin A.S., Kizeev I.S., Ezrokhi Yu.A. Nauka i Obrazovanie, 2017, no. 3, pp. 116 – 136, doi: 10.7463/0317.0000964

  6. Johnson J.E. Adaptive core engine: US Patent WO 2011038188 A1. 2011.

  7. Johnson J.E. Convertible gas turbine engine. European patent specification EP 1942269 B1. 19.08.2015.

  8. Dave Majumdar Rivals power up for AETD engine programme bid, Flight International, 2013, vol. 182, no. 5380, pp. 18.

  9. Thomson D.E. Versatile affordable advanced turbine engines. Provide game changing capability with superior fuel efficiency, 11th Annual Science & Engineering Technology Conference, DoDTech Expo, Air Force Research Laboratory, 2010, 11 p. available at: htpp://

  10. Guy Norris, Jen DiMascio, Graham Warwick. Low-fuel-burn engine plan raises red flag for Pratt on F-35 as bids come in, Aviation Week, 2012, vol. 174, no. 19, pp. 24 – 27.

  11. Guy Norris AFRL evaluations lead way toward follow-on three-stream engine development initiative, Aviation week, 2016, vol. 178, no. 25, pp. 34.

  12. Guy Norris Adaptive engine tests pave way for sixth-generation fighters and possible F-35 retrofit, Aviation Week, 2015, vol. 177, no. 2, pp. 26 – 30.

  13. Kikot’ N.V., Kretinin G.V., Leshchenko I.A., Fedechkin K.S. Trudy XLII akademicheskikh chtenii po kosmonavtike, posvyashchennykh pamyati akademika S.P. Koroleva i drugikh vydayushchikhsya otechestvennykh uchenykh-pionerov osvoeniya kosmicheskogo prostranstva, (Moscow, 23-26 yanvarya 2018), Moscow, MGTU im. N.E. Baumana, 2018, pp. 293.

  14. Leshchenko I.A., Shmotin Yu.N., Fedechkin K.S., Kikot’ N.V. Vserossiiskaya nauchno-tekhnicheskaya konferentsiya “Aviadvigateli XXI veka”). Tezisy dokladov, (Moscow, 24-27 noyabrya 2015), Moscow, TsIAM, 2015. pp. 77 – 79.

  15. Ezrokhi Yu.A., Drygin A.S., Kizeev I.S. Patent RU 2637153, 30.11.2017.

  16. Nechayev Yu.N., Fedorov R.M., Kotovskii V.N., Polev A.S. Teoriya aviatsionnykh dvigatelei (Aircraft engines theory), Moscow, VVIA im. prof. N.E. Zhukovsky, 2006, Part 2, 448 p.

  17. Gurevich O.S., Golberg F.D., Zuev S.A., Busurin V.I. Trudy MAI, 2017, no. 93, available at:

  18. Fedorchenko Yu.P., Schorstov V.A., Makarov V.E. Svidetel’stvo o gosudarstvennoi registratsii programm dlya EVM “Programmniy kompleks COBRA NG v1.0”, no. 2011615671, 20.12.2011 (Certificate of state registration of computer programs “Software package COBRA NG v1.0”, no. 2011615671, 20.12.2011).

  19. Spalart P.R., Allmaras S.R. A one equation turbulence model for aerodynamic flows, AIAA Paper, 1992, no. 92-0439.

  20. Sorokin V.A., Kopylov A.V., Tikhomirov M.A., Stirin E.A., Loginov A.N., Fedorov D.Yu., Valui P.V. Trudy MAI, 2015, no. 84, available at:

  21. Peter W. Merlin Design and Development of the Blackbird: Challenges and Lessons Learned, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, 5 – 8 January 2009, Orlando, Florida. 38 p.

  22. Peter Law SR-71 propulsion system P&W J58 Engine (JT11D-20), 2013, available at:

  23. Litvinov Yu.A., Borovik V.O. Charakteristiki i expluatacionnye svoistva aviatsionnykh turboreaktivnykh dvigatelei (Characteristics and service properties of aviation gas turbine engines), Moscow, Mashinostroenie, 1979, 288 p.

  24. Ezrokhi Yu.A., Kalensky S.M., Kizeev I.S. Vestnik Moskovskogo aviatsionnogo instituta, 2017, vol. 24, no. 1, pp. 26 – 37.

  25. Yugov O.K., Selivanov O.D. Osnovy integracii samoleta i dvigatelya (Fundamentals of aircraft and engine integration), Moscow, Mashinostroenie, 1989, 304 p.

  26. Fokin D.B., Isyanov A.M. Vestnik Moskovskogo aviatsionnogo instituta, 2014, vol. 21, no. 4, pp. 132 – 143.

Download — informational site MAI

Copyright © 2000-2021 by MAI