Self-similarity parameter effect on critical characteristics of Hamel type compressible flow

Fluid, gas and plasma mechanics


Brutyan M. A.1*, Ibragimov U. G.2**

1. Central Aerohydrodynamic Institute named after N.E. Zhukovsky, TsAGI, 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia
2. Moscow Institute of Physics and Technology, 9, Institutskiy per., Dolgoprudny, Moscow region, 141701, Russia



The article envisages the stationary flow of a viscous compressible gas flowing out the vertex of cone.

This flow is an analog of the famous Hamel flow between the two plane walls, inclined to each other at an angle. Unlike the classical case, axisymmetric compressible flow is considered. It is worth mentioning, that the studies on this theme were being carried out earlier by Williams (1967), Byrkin (1969) and others.

In this work the flow inside a cone is assumed radial, i.e. only one velocity component is not trivial: V*=(u*,0,0). Moreover, all flow gas-dynamic parameters are assumed dependent from the distance to the source r* by the power law, while conductivity coefficients are temperature dependent by the Frost law η*, κ*∼T*k, so:

It appeared that self-similarity solutions existed only at the certain relation between the self-similarity parameter m and the power law index k in the form of 2mk=1.

In this case, the system of Navier–Stokes equations written in spherical coordinates is being reduced to the system of nonlinear second-order ordinary differential equations (ODE). The problem key parameters are included to these equations and boundary conditions. They are α, Re0, M0, Tw, Q. It was established that the solution was determined by specifying only two parameters, while three others were being found automatically.

The nonlinear ODE system was being solved at various values of self-similarity parameters: m = 5·(k = 1), m≅0.66 · ( k = 0.76 ) and m = 1 · (k = 0.5 ).The first combination corresponds to Maxwell’s molecules model, second relates to the well-known Frost’s empirical model (η, κ~T0.76 ), and the third corresponds to the Hard Spheres model.

It was established that the ODE system solution existed only at the cone semi-opening angle less than some critical value of α*. With larger α, the medium continuity assumption becomes inapplicable (Kn=M0/Re0→1)  , so the gas temperature on the cone wall appears negative , which is physically unacceptable.

Thus, the presented work performed the analysis of viscous compressible gas flow in a cone at various values of self-similarity parameter m and set corresponding critical flow characteristics.


Navier–Stokes equations, exact solutions, viscous gas axisymmetric flow


  1. Berker R. Intégration des équations du movement d’un fluide visqueux incompressible. Handbuch der Physik. Band 8/2. Berlin, Springer, 1963, pp. 1 – 384.

  2. Landau L.D., Lifshits E.M. Gidrodinamika (Fluid Mechanics), Moscow, Nauka, 1986, 735 p.

  3. Ackerberg R.C. The viscous incompressible flow inside a cone, Journal Fluid Mechanics, 1965, vol. 21, pp. 47 – 81.

  4. Brutyan M.A. Uchenye Zapiski TsAGI, 2017, vol. XLVIII, no. 6, pp. 13 – 22.

  5. Byrkin A.P. Uchenye Zapiski TsAGI, 1970, vol. 1, no 6, pp. 15 – 21.

  6. Williams J.C. Conical nozzle flow velocity slip and temperature jump, AIAA Journal, 1967, vol. 5, no. 12, pp. 2128 – 2134.

  7. Brutyan M.A., Ibragimov U.G. Uchenye Zapiski TsAGI, 2018, vol. XLIX, no. 3, pp. 26 – 35.

  8. Byrkin A.P. Prikladnaya matematika i mekhanika, 1969, vol. 33, no. 1, pp. 152 – 157.

  9. Byrkin A.P., Mezhirov I.O. Izvestiya AN SSSR. Mekhanika zhidkosti i gaza, 1969, no. 1, pp. 100 – 105.

  10. Shchennikov V.V. Prikladnaya matematika i mekhanika, 1969, vol. 33, no. 3, pp. 582 – 584.

  11. Street R.E. A study of boundary conditions in slip flow aerodynamics, Rarefied Gas Dynamics: Proceedings of the First International Symposium on Rarefied Gas Dynamics at Nice, Pergamon Press, New York, 1960, pp. 276 – 292.

  12. Mirels H. Estimate of slip effect on compressible laminar-boundary-layer skin friction, NACA TN 2609, 1952, pp.1 – 21.

  13. Golubkin V.N., Sizykh G.B. Uchenye Zapiski TsAGI, 2018, vol. XLIX, no. 1, pp. 27 – 38.

  14. Brutyan M.A., Krapivskii P.L. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki, 1992, vol. 31, no. 2, pp. 326 – 329.

  15. Wang C.Y. Exact solution of unsteady Navier–Stokes equation, ASME Applied Mechanics Reviews, 1989, vol. 58, pp. 269 – 282.

  16. Wang C.Y., Exact solution of the steady-state Navier–Stokes equation, Annual Review of Fluid Mechanics, 1991, no. 23, pp. 159 – 177.

  17. Larina E.V., Kryukov I.A., Ivanov I.E. Trudy MAI, 2016, no. 91, available at:

  18. Lifshits E.M., Pitaevskii L.P. Fizicheskaya kinetika (Physical Kinetics), vol. 10, Moscow, Nauka, Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1979, 528 p.

  19. Chepmen S., Kouling T. Matematicheskaya teoriya neodnorodnykh gazov (The mathematical theory of non-uniform gases), Moscow, Izd-vo inostrannoi literatury, 1960, 510 p.

  20. Sebisi T., Bredshou P. Konvektivnyi teploobmen (Convective heat transfer), Moscow, Mir, 1987, 592 p.

Download — informational site MAI

Copyright © 2000-2021 by MAI