Architecture of prospective onboard equipment control complexes

System analysis, control and data processing


Аuthors

Polyakov V. B.*, Neretin E. S.1**, Ivanov A. S.2***, Budkov A. S.3****, Dyachenko S. A.*****, Dudkin S. O.

1. ,
2. Integration center branch of the Irkut Corporation, 5, Aviazionny pereulok, Moscow, 125167, Russia
3. ,

*e-mail: viktor.polyakov@ic.irkut.com
**e-mail: evgeny.neretin@ic.irkut.com
***e-mail: andrey.ivanov@uac-ic.ru
****e-mail: aleksandr.budkov@uac-ic.ru
*****e-mail: sergey.dyachenko@uac-ic.ru

Abstract

Avionics of a modern aircraft is developed in accordance with the integrated modular avionics (IMA) concept, based on a common computing platform and an open network architecture. With this approach, the functions of aircraft systems (for example, flight management, stall warning, etc.) are allocated to logical sections, i.e. functional software. It is located in one or several physical modules (unified in terms of design), which are set in a common housing, i.e. a crate. Based on the IMA concept, avionics was realized on a number of aircraft, such as, MC-21, Boeing 787, Airbus A380, F-35, Su-57.

Additional advantages are provided by implementing the Distributed IMA approach. In this case, it is possible to dispose the modules in separate blocks outside the crate in the places of concentration of the onboard units and sensors. This approach allows reduce the weight and size of the cable network; increase the noise immunity of the transmitted data, and system reliability in total.

Some modern aircraft employ control systems of common aircraft equipment, which allow realize computer functions of a number of aircraft systems (such as hydraulic system, system of doors, hatches and emergency gangways, parking brake system) in a single block. Data reception from sensors, and instruction issue to actuators is performed by information input-output devices, distributed all over the aircraft. Application of the aircraft equipment control system provides the time and material expenses reduction at every stage of the aircraft life cycle due to enhancing functions of the software together with the number of computing units’ reduction, i.e. system function integration in one computing unit.

The architecture of the perspective control system for onboard equipment based on the distributed IMA concept is proposed. With increased reliability this architecture can significantly reduce the material and time expenses of onboard equipment development, maintenance and modernization. Also, the architecture of the complex components, namely, onboard equipment control module and data conversion module was proposed.

This complex was designed for performing functions with the assigned FDAL (Function Development Assurance Level) “A” (the aircraft function loss is classified as catastrophic) in accordance with the ARP4754A Standard.

To achieve this goal, the development process described in RTCA DO-178, DO-254, and DO-297 was implemented. These documents set the software and hardware development process requirements for onboard equipment of civil aviation.

Keywords:

aircraft onboard control system, integrated modular avionics, data conversion module

References

  1. ARINC Specification 429P1-17. MARK 33 Digital Information Transfer System (DITS). Part 1: Functional Description, Electrical Interface, Label Assignments and Word Formats, The USA, Annapolis, 2004, 309 p.

  2. ARINC Specification 653P1-3. Avionics application software standard interface. Part 1: Required Services, The USA, Annapolis, 2010, 269 p.

  3. ARINC Specification 664P1-1. Aircraft Data Network. Part 1: Systems Concepts and Overview, The USA, Annapolis, 2006, 51 p.

  4. ARINC Specification 825-2. General Standardization of CAN (Controller Area Network) Bus Protocol for Airborne Use, The USA, Annapolis, 2011, 170 p.

  5. ARP4754 Aerospace Recommended Practice. Guidelines for Development of Civil Aircraft and Systems, Revision A, The USA, Warrendale, 2010, 115 p.

  6. DO-178C Software Considerations in Airborne Systems and Equipment Certification, The USA, Washington, 2011, 144 p.

  7. DO-254 Design Assurance Guidance for Airborne Electronic Hardware, The USA, Washington, 2000, 137 p.

  8. DO-297 Integrated Modular Avionics (IMA) Development. Guidance and Certification Considerations, The USA, Washington, 2005, 137 p.

  9. Patent 0065669 United States, Int. Cl. G06F 7700. Aircraft equipment control system / W. Roux, J. Y. Vilain. Appl. No. 10/915.688; Filed 11.08.2004; Pub. Date. 24.03.2005.

  10. Patent 017382 United States. Int. Cl. H04L 12/40. Remote data concentrator / T. Todd, T. Nitsche. Appl. No. 13/821.315; Filed 08.09.2011; Pub. Date. 04.07.2013.

  11. Avakyan A.A. Trudy MAI, 2013, no. 65, available at: http://trudymai.ru/eng/published.php?ID=35845

  12. Zaitsev D.Yu., Neretin E.S., Ramzaev A.M. Trudy MAI, 2016, no. 85, available at: http://trudymai.ru/eng/published.php?ID=65216

  13. Kvalifikatsionnye trebovaniya KT-178C. Trebovaniya k programmnomu obespecheniyu bortovoi apparatury i sistem pri sertifikatsii aviatsionnoi tekhniki (Software Considerations in Airborne Systems and Equipment Certification КТ-178С), Moscow, Aviation Register of the Interstate Aviation Committee, 2016, 131 p.

  14. Kvalifikatsionnye trebovaniya KT-254. Rukovodstvo po garantii konstruirovaniya bortovoi elektronnoi apparatury (Design Assurance Guidance for Airborne Electronic Hardware КТ-254), Moscow, Aviation Register of the Interstate Aviation Committee, 2011, 89 p.

  15. Kucheryavyi A.A. Avionika (Avionics), Saint-Petersburg, Izdatel’stvo “Lan' ”, 2017, 452 p.

  16. Popovich K.F., Naryshkin V.Yu., Bebutov G. G. et al. Patent 2528127 SU MPK G01C 23/00,10.07.2014.

  17. Demchenko O.F., Popovich K.F., Naryshkin V.Yu. et al. Patent 2592193 SU MPK G01C 23/00 B64C 19/02, 20.07.2016.

  18. Rukovodstvo R-297 po razrabotke i sertifikatsii integrirovannoi modul’noi avioniki (Integrated Modular Avionics (IMA) Development. Guidance and Certification Considerations R-297), Moscow, Aviation Register of the Interstate Aviation Committee, 2010, 101 p.

  19. Rukovodstvo R-4754A po razrabotke vozdushnykh sudov grazhdanskoi aviatsii i system (Aerospace Recommended Practice. Guidelines for Development of Civil Aircraft and Systems R4754A, Revision A), Moscow, Aviation Register of the Interstate Aviation Committee, 2016, 131 p.

  20. Samolet RRJ-95B. Rukovodstvo po letnoi ekspluatatsii (v chetyrekh chastyakh) (RRJ-95B. Flight Operation Manual), Moscow, Sukhoi Civil Aircraft, 2018, 4673 p.

  21. Samolet Tu-204SM. Rukovodstvo po ekspluatatsii. Razdel 39. Sistema upravleniya obshchesamoletnym oborudovaniem (SUOSO-204) (Tu-204SM. Flight Operation Manual), Moscow, Tupolev, 2010, 74 p.

  22. Lebedev G.N., Mikhailin D.A., Neretin E.S. et al. Sovremennye podkhody k proektirovaniyu sistem upravleniya bespilotnymi letatel’nymi apparatami (Modern approaches to control systems design for unmanned aerial vehicles), Moscow, Izd-vo MAI, 2015, 132 p.

  23. Fedosov E.A., Kos’yanchuk V.V., Sel’vesyuk N.I. Radioelektronnye tekhnologii, 2015, no. 1, 66 – 71 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход