A model of aircraft impulse laser rangefinder operating on aerodynamic objects

System analysis, control and data processing


Dolgikh A. E.1*, Zhidkov P. M.2

1. Moscow Institute of Physics and Technology, 9, Institutskiy per., Dolgoprudny, Moscow region, 141701, Russia
2. Company “Space special-purpose systems corporation “Kometa”, 5, Velozavodskaya str., Moscow, 115280, Russia

*e-mail: sanek_up@mail.ru


The simulation model of an airborne impulse laser rangefinder was developed. The article describes three basic structural parts of the model. The model was realized in C++. The model realized the processes of laser generation, reflection from a complex object, small signal receiving and digital information processing. Later, the obtained model results were compared to a priori information on the distance between a laser and a target. Aerodynamic targets were represented by 3D polygonal models. The rangefinder photodetector is discrete in time. Computing the number of photons for each clock cycle is performed by strobing the irradiance map over the range map. The irradiance and rang maps were created by the rendering method. To account for of different polygons’ overlapping each other, the rendering was performed employing the z-buffer algorithm. The model describes the radiation noise of photodetector was using the Poisson distribution. The readout noise was described by the normal distribution.

The range measurements are being performed several times. Then the results are analyzed by the trajectory processing. In contrast to signal accumulation, this processing is stable to the laser response shift from the target in clock cycles of photodetector unit. The true and false trajectories selection is performed by the threshold value of the trajectory length. The model operation was realized on the example of three aerial vehicles, such as Boeing747, Hornet and Tomahawk. The authors demonstrated the possibility of model tests statistical analysis for determining dependencies of operation range and measuring accuracy from pulse duration and sampling frequency of photodetector unit. The extreme value of laser rangefinder range capacity was determined by the signal/noise ratio level, ensuring stable measurements. Based on the obtained results the authors suggested application of pulse duration of τ < 100 ns and sampling frequency of about 60 MHz.


laser rangefinder, simulation model, range measuring


  1. Buraga A.V., Kostjukov V.M. Trudy MAI, 2012, no. 53, available at: http://trudymai.ru/eng/published.php?ID=29624

  2. Bokshanskii V.B., Bondarenko D.A., Vyazovykh M.V. et al. Lazernye pribory i metody izmereniya dal’nosti (Laser devices and methods of range measuring), Moscow, Izd-vo MGTU im. N.E. Baumana, 2012, 92 p.

  3. Law A.M., Kelton W.D. Simulation modeling and analysis, New York, McGraw-Hill, 2000, 155 p.

  4. Buslenko N.P. Modelirovanie slozhnykh system (Simulation of complex systems), Moscow, Nauka, 1978, 400 p.

  5. Starovoitov E.I., Savchuk D.V. Trudy MAI, 2012, no. 75, available at: http://trudymai.ru/eng/published.php?ID=49709

  6. Telgarsky R.J., Cates M.C., Thompson C., Sanders-Reed J.N. High Fidelity Ladar Simulation, Laser Radar Technology and Applications. IX International Society for Optics and Photonics, 2004, vol. 5412, pp. 194 – 208.

  7. Z. Zang, Y. Zhao, Y Zhang, L. Wu, J. Su, A real-time noise filtering strategy for photon counting 3D imaging lidar, Optics Express, 2013, vol. 21, no.8, pp. 9247 – 9257.

  8. Min S., Kim S., Lee I. Data simulation of Ladar sensor: Focusing on geometric modeling, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS, Beijing, China, 2008, vol. 37, pp. 439 – 443.

  9. Hao Q., Cao J., Hu Y., Yang Y., Li K., Li T. Differential optical-path approach to improve signal-to-noise ratio of pulsed-laser range finding, Optics express, 2014, vol. 22, no. 1, pp. 563 – 575.

  10. Filachev A.M., Taubkin I.I., Trishenkov M.A. Sovremennoe sostoyanie i magistral’nye napravleniya razvitiya tverdotel’noi fotoelektroniki (State-of-the-art and main trends of solid-state photoelectronics development), Moscow, Fizmatkniga, 2010, 128 p.

  11. Bezlepkina E.D., Dolgikh A.E., Zhidkov P.M. et al. Svidetel’stvo gosudarstvennoi registratsii dlya EVM "Programma dlya modelirovaniya impul’snykh lazernykh izmerenii dal’nosti do ob"ektov, zadannykh trekhmernymi modelyami«, № 2017619574, 28.08.2017 (Certificate of state registration of computer programs “Program for simulation impulse laser range measurements to objects, represented by three-dimensions models”, No. 2017619574, 28.08.2017).

  12. Asnis L.A., Vasil’ev V.P., Volkonskii V.B. et al. Lazernaya dal’nometriya (Laser range finding), Moscow, Radio I svjaz’, 1995, 256 p.

  13. Richmond R.D., Cain S.C. Direct-detection LADAR Systems. Introduction to LADAR Systems. International Society for Optics and Photonics, 2010. SPIE, Washington, 157 p.

  14. Berkovic G., Shafir E. Optical methods for distance and displacement measurements, Advances in Optics and Photonics, 2012, vol. 4, no. 4, pp. 441 – 471.

  15. Rogers D.F. Procedural elements for computer graphics, New York, McGraw-Hill, 1998, 727 p.

  16. Batrakov A.S., Ivanov V.P. Trekhmernaya komp’yuternaya grafika (3D computer graphics), Moscow, Radio I svjaz’, 1995, 224 p.

  17. Fedoseev V.I. Priem prostranstvenno-vremennykh signalov v optiko-elektronnykh sistemakh (Space-time signals detecting by electro-optical systems), Moscow, Universitetskaja kniga, 2011, 232 p.

  18. Kuz’min S.Z. Osnovy teorii tsifrovoi obrabotki radiolokatsionnoi informatsii (Elements of theory of radiolocation information digital processing), Moscow, Sovetskoe radio, 1974, 432 p.

  19. Kuz’min S.Z. Osnovy proektirovaniya sistem tsifrovoi obrabotki radiolokatsionnoi informatsii (Elements of radiolocation information digital processing systems development), Moscow, Radio I svjaz’, 1986, 352 p.

  20. Vil’ner V.G., Laryushin A.I., Rud’ E.L. Fotonika, 2007, no. 6, pp. 22 – 26.


mai.ru — informational site MAI

Copyright © 2000-2021 by MAI