Modeling technique in a life cycle of a cosmodrome large automated system of a Smart City level

System analysis, control and data processing


Badalov A. Y., Razumov D. A.*

Russian Corporation of communications - software systems, Baumanskaya str., building 16, Moscow, 105005, Russia



The design and development of large-scale automated systems (AS) is always associated with surmounting of a large number of uncertainties, which structuring is often performed by employing the practice of standards and modeling in the framework of Systems & Software Engineering trend. Methods of the large systems (LS) analysis suppose their decomposition in the frame of structural and/or functional paradigms, which allow consider the obtained components as objects for functional, structural and other kinds of modeling. The complexity is stipulated by the fact, that the structural realization of such systems is ambiguous, and determined by a variety of factors, such as the presence of communication channels, the level of duty services automation, the interaction of agencies, the level of financial provision etc. Thus, the design of such LSs is associated with decomposition of the General problem at the level of the life cycle paradigm in the frame of structural and functional component hierarchy, which nodes contain the dispatching services and control centers. Besides, the problems of organizational and regulatory interaction require rather flexible approach to realization at each stage of a life cycle. While a cosmodrome of a regional level automated control system (ACS) design, the necessity occurs to optimize the taken decisions. Systems of this kind are functioning at all time and continuously, irrespective of automation level. In this sense, the time of their operation possesses a power of the continuum. Thus, the presented article suggests modeling technique exactly within the life cycle (LC) of a cosmodrome LS, including implementation of a simulation model for the system key performance indicators (KPI) optimization. The presented materials come in handy for the designers of large regional automated systems in the Smart City context such as cosmodrome ACS, as well as ASs of regional and municipal levels, ASs of a large-scale sporting events of national and international levels, situational centers of regional and municipal governments, departmental automated systems, including such a specific sphere, to which organs of government and management are related.


The life cycle of the system, large system, Systems & Software Engineering, Smart City


  1. W. Edwards Deming. Out of the Crisis, The MIT Press Cambridge, Massachusetts, London, England, 1882, 419 p.

  2. Emel’yanov A.A., Malyshev V.V., Smol’yaninov Yu.A., Starkov A.V. Trudy MAI, 2017, no. 96, available at:

  3. Artem’ev V.Yu., Vorontsov V.L. Trudy MAI, 2011, no. 44, available at:

  4. Panov D.V., Malyshev V.V., Piyavskii S.A., Kovkov D.V. Modernizatsiya. Innovatsii. Razvitie, 2016, vol. 7, no. 2, pp. 74 – 83.

  5. Malyshev V.V. Metody optimizatsii v zadachakh sistemnogo analiza i upravleniya (Optimization Methods in problems of system analysis and management), Moscow, Izd-vo MAI-PRINT, 2010, 440 p.

  6. Blanchard Benjamin S. System Engineering Management, John Wiley & Sons, 2004, 498 p.

  7. Benjamin S. Blanchard, Wolter J. Fabrycky. Systems Engineering and Analysis, Prentice Hall, 1998, 738 p.

  8. Clemen R., Reilly T. Making Hard Decisions with Decision Tools Suite, Duxbury USA, 2002, 678 р.

  9. Keeney Ralph L. Value-Focused Thinking: A Path to Creative Decisionmaking, Harvard University Press, 1996, 432 p.

  10. Whittleston S. Introduction to System Analysis and Design, Bolton, School of Business and Creative Technology University of Bolton, 2010, 567 p.

  11. Kendall K. Kendall J. Systems analysis and design. Upper Saddle River, Prentice Hall, 1999, 450 p.

  12. Dennis A., Wixom B. Systems analysis design, New York, J. Wiley, 2003, 675 р.

  13. Millington D. Structured systems analysis and design using standard flowcharting symbols, The Computer Journal, 1981, no. 24(4), pp. 295 – 300.

  14. ISO/IEC/IEEE 15288:2015. Systems and software engineering – System life cycle processes, International Organization for Standardization, 2005, 108 р.

  15. Avtomatizirovannye sistemy. Stadii sozdaniya. GOST 34. 601-90 (Automated Systems. Stages of Design, State Standard 34. 601-90), Moscow, Standarty, 1990, 9 p.

  16. Avtomatizirovannye sistemy. Tekhnicheskoe zadanie na sozdanie avtomatizirovannoi sistemy. GOST 34. 602-99 (Automated Systems. Technical Requirements for Automated System Development, State Standart 34. 602-99), Moscow, Standarty, 1989, 21 p.

  17. Razumov D.A., Aleshin V.D. Trudy V vserossiiskoi nauchno-prakticheskoi konferentsii po imitatsionnomu modelirovaniyu i ego primeneniyu v nauke i promyshlennosti, Saint-Petersburg, Noyabr’ 2011, pp. 244– 249.

  18. Zagrebaev A.M., Kritsyna N.A., Kulyabichev Yu.P., Shumilov Yu.Yu. Metody matematicheskogo programmirovaniya v zadachakh optimizatsii slozhnykh tekhnicheskikh system (Mathematical simulation methods in problems of complex technical systems optimization), Moscow, MIFI, 2007, 332 p.

  19. Lotov A.V., Pospelova I.I. Mnogokriterial’nye zadachi prinyatiya reshenii (Multi-criteria decision-making tasks: training manual), Moscow, MAKS Press, 2008, 197 p.

  20. Panteleev A.V., Letova T.A. Metody optimizatsii v primerakh i zadachakh (Оptimization methods in examples and problems), Moscow, Vysshaya shkola, 2005, 544 p.

Download — informational site MAI

Copyright © 2000-2021 by MAI