Bending deflection of a non-uniform bar at axial compression

Deformable body mechanics


Аuthors

Egorov A. V.

National Institute of Aviation Technologies, 3, Kirovogradskaya str., Moscow, 117587, Russia

e-mail: antegor177@mail.ru

Abstract

The article considers a process of deformation of a hinged-mounted non-uniform bar at the axial compression. Numerical computation was performed with ANSYS and LS-DYNA software, using 3D finite elements in elastoplastic domain. The fact of stability loss was being established through the values of bending deflections being determined.

The bar non-uniformity was specified by the three elastic insertions with elasticity modulus differing from basic material of the bar. The insertions were located along the bar superficies non-symmetrically relative to its axis. A steel bar with elasticity modulus of
Ef = 200 GPa with two types of insertions, namely, hard with elasticity modulus of
Ef = 180 GPa, and soft with elasticity modulus of Ef = 1 kPa was considered.

The insertions were of a small volume: in total 0.8% relative to the bar volume.

Based on modal analysis, forms of oscillations and natural frequencies of the non-uniform bar were obtained with ANSYS software, which were compared to the shapes and frequencies of the uniform bar.

Lateral motions (bending deflections) of an axially compressed non-uniform bar were found by computing its stress and strain state with LS-DYNA software in dynamic setting, which allowed obtaining bending deflections as a function of time. For the first five forms of stability losses of the non-uniform bar corresponding loads were calculated.

Loading of the bar bending deflection over one half-wave (per the first form) was compared to Euler’s critical load. It was shown, that the obtained critical loading exceeded it by 21%. This loading can be considered as the upper estimation, since the insertions were of small volume.

With an assumption of the bar non-destructiveness, the process of shape changing, associated with large displacements was established with LS-DYNA software, and a time instant of ultimate strain reaching in the upper thin layer on the bumpy surface of the bended bar was indicated.

Keywords:

column strut, compression, stability, modal analysis, finite elements method, mode of deformation

References

  1. Feodos’ev V.I. Soprotivlenie materialov (Strength of materials), Moscow, Izd-vo MGTU im. N.E. Baumana, 2016, 543 p.

  2. Feodos’ev V.I. Izbrannye zadachi i voprosy po soprotivleniyu materialov (Selected tasks and questions on the strength of materials), Moscow, Nauka. Fizmatlit, 1996, 368 p.

  3. Bolotin V.V. Nekonservativnye zadachi teorii uprugoi ustoichivosti (Nonconservative problems of the elastic stability theory), Moscow, Izd-vo fiziko-matematicheskoi literatury, 1961, 340 p.

  4. Timoshenko S.P. Ustoichivost’ sterzhnei, plastin i obolochek (Stability of bars, plates and shells), Moscow, Nauka, 1971, 808 p.

  5. Vol’mir A.S. Ustoichivost’ deformiruemykh sistem (Stability of deformable systems), Moscow, Nauka. Fizmatlit, 1967, 984 p.

  6. Alfutov N.A. Osnovy rascheta na ustoichivost’ uprugikh system (Fundamentals of elastic systems stability calculation), Moscow, Mashinostroenie, 1991, 336 p.

  7. Euler L. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive Solutio problematis isoperimetrici latissimo sensu accepti, Lausannae et Genevae: Bousquet et Socios, 1744, 322 p

  8. Morozov N.F., Tovstik P.E. Vestnik Sankt-Peterburgskogo universiteta, 2009, no. 2, pp. 105 – 111.

  9. Belyaev A.K., Morozov N.F., Tovstik P.E., Tovstik T.P. Izvestiya RAN. Mekhanika tverdogo tela, 2015, no. 4, pp. 112 – 125.

  10. Morozov N.F., Tovstik P.E., Tovstik T.P. Doklady RAN, 2014, vol. 455, no. 4, pp. 412 – 415.

  11. Lavrent’ev M.A., Ishlinskii A.Yu. Doklady Akademii Nauk, 1949, vol. 64, no. 6. pp. 779 – 782.

  12. Belyaev A.K., Il’in D.N., Morozov N.F. Izvestiya RAN. Mekhanika tverdogo tela. 2013. № 5. S. 28 – 33.

  13. Morozov N.F., Tovstik P.E., Tovstik T.P. Problemy prochnosti i plastichnosti, 2015, vol. 77, no. 1, pp. 40 – 48.

  14. Svetlitsky V.A., Naraykin O.S Problemy prikladnoi mekhaniki, dinamiki i prochnosti mashin. Sbornik statei (Problems of applied mechanics, dynamics and strength of machines), Moscow, Izd-vo MGTU im. N.E. Baumana, 2005, pp. 244 – 259.

  15. Ferretti M., Luongo A. Flexural-Torsional Flutter and Buckling of Braced Foil Beams under a Follower Force, Mathematical Problems in Engineering, 2017, (2):1–10. DOI: 10.1155/2017/2691963

  16. Andersen S.B., Thomsen J.J. Post-critical behavior of Beck’s column with a tip mass, International Journal of Non-Linear Mechanics, 2002, no. 37, pp. 135 – 151.
  17. Detinko F.M. Lumped damping and stability of Beck column with a tip mass, International Journal of Solids and Structures, 2003, no. 40, pp. 4479 – 4486.
  18. Seyranian A.P., Seyranian A.A. Chelomei’s problem of the stabilization of a statically unstable rod by means of vibration, Journal of Applied Mathematics and Mechanics, 2008, vol. 72, pp. 898 – 903.

  19. Di Egidio A., Luongo A., Paolone A. Linear and nonlinear interactions between static and dynamic bifurcations of damped planar beams, International Journal of Non-Linear Mechanics, 2007, vol. 42 (1), pp. 88–98. DOI: 10.1016/j.ijnonlinmec.2006.12.010

  20. Eliseev V.V., Zinov’ev T.V. Mekhanika tonkostennykh konstruktsii. Teoriya sterzhnei (Mechanics of thin-walled structures. Theory of rods), Saint Petersburg, Izd-vo SPbGTU, 2008, 95 p.

  21. Zhilin P.A. Prikladnaya mekhanika. Teoriya tonkikh uprugikh sterzhnei (Applied mechanics. Theory of thin elastic rods), Saint Petersburg, SPbSTU, 2007, 101 p.

  22. Lalin V.V., Yavarov A.V. Zhilishchnoe stroitel’stvo, 2013, no. 5, pp. 51 – 55.

  23. Popov V.V., Sorokin F.D., Ivannikov V.V. Trudy MAI, 2017, no. 92, available at: http://trudymai.ru/eng/published.php?ID=76832

  24. Egorov A.V. Inzhenernyi zhurnal: nauka i innovatsii, 2018, no. 4 (76). DOI: 10.18698/2308-6033-2018-4-1750

  25. Egorov A.V. Aviatsionnaya promyshlennost’, 2018, no. 2, pp. 22 – 26.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход