Application specifics of electrically driven units in an aircraft power plants

Thermal engines, electric propulsion and power plants for flying vehicles


Legkonogikh D. S.1*, Golev I. M.1**, Preobrazhensky A. P.2***, Zelenin A. N.3****

1. Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, 54a, Starykh bol'shevikov, Voronezh, 394064, Russia
2. Voronezh Institute of high technologies, 73a, Lenina str., Voronezh, 394043, Russia
3. UEC-Klimov, 11, Kantemirovskaya Str., Saint-Petersburg, 194100, Russia



The article analyzes the work on the creation of electric drive units for aircraft and propulsion systems. The trends of gas turbine engines electrification are presented, the most important of which is replacement of mechanical and hydraulic actuators of propulsion unit by electric ones. The article demonstrates that application of electrically driven units in gas-turbine engine systems has a number of advantages associated with reduction mass and size parameters reduction, reliability increase, combat survivability and other operational properties of aircraft power plants. However, the effective implementation of these measures requires solution of some problematic issues of the development of onboard electric energy sources with high specific power. The review of domestic and foreign developments of electrically driven units for existing and prospective aircraft engines is presented. One of the possible options of fault-tolerant structural scheme of the fuel system of a twin-engine aircraft power plant with electric fuel pumps is proposed. This structural scheme will allow performing partial or full restoration of the fuel system in case of operational failures occurrence, as well as in the case of combat damages. The inference was drawn that at present application of electric drive for the units of relatively low power was most expedient.

For actual mass introduction of electrically driven units to aircraft systems it is necessary to carry out further works on assessing the possibility, feasibility and effectiveness of these measures.


power plant, gas-turbine engine, electrically driven unit, fuel pump, automatic control system


  1. Belkin Yu.S., Gulienko A.I., Gurevich O.S. Sistemy avtomaticheskogo upravleniya aviatsionnymi GTD (Automatic control systems of aircraft GTE), Moscow, Torus Press, 2011, 208 p.

  2. Gurevich O.S., Gulienko A.I. Klimovskie chteniya – 2017. Perspektivnye napravleniya razvitiya aviadvigatelestroeniya. Sbornik statei, (Saint Peterburg, 20 Okt. 2017), Saint Peterburg, Skifiya-print, 2017, pp. 214 – 223.

  3. Skibin V.A., Solonin V.I., Palkin V.A. Raboty vedushchikh aviadvigatelestroitel’nykh kompanii v obespechenie sozdaniya perspektivnykh aviatsionnykh dvigatelei (Works of leading aircraft engine companies on ensuring advanced aircraft engines creation), Moscow, TsIAM, 2010, 672 p.

  4. Legkonogikh D.S., Zelenin A.N. Problemy i perspektivy razvitiya dvigatelestroeniya. Sbornik trudov. (Samara, 22-24 Jun. 2016), Samara, Samarskii natsional’nyi issledovatel’skii universitet imeni akademika S.P. Koroleva, 2016, issue 1, pp. 207 – 208.

  5. Trubaev P.A., Besedin P.V. Praktikum po gidravlicheskim mashinam i kompressoram (The workshop on hydraulic machinery and compressors), Belgorod, Izd-vo BelGTASM, 2001, 108 p.

  6. Stepher J. Bradbook. The case for embedded starter generator in military combat engine, 2009, ISABE Paper № 2009-1242.

  7. Legkonogikh D.S., Zelenin A.N. IV Vserossiiskaya nauchno-prakticheskaya konferentsiya “Akademicheskie Zhukovskie chteniya”. Sbornik statei, (Voronezh, 23-24 November 2016), Voronezh, VUNTs VVS “VVA”, 2017, pp. 151 – 157.

  8. A fly-by-wireless UAV platform based on a flexible and distributed system architecture, IEEE № 1-4244-0726-5/06, 2006, pp. 2359 – 2364.

  9. Dedicated frequency allocation for aircraft onboard wireless systems. Boeing company. ICAO ACP WG-F Meeting, Nairobi, September 2007, available at:

  10. Radio- frequency wireless flight-control systems, Dryden Flight Research Center. DRC-9609, NASA Tech Briefs, 2008, vol. 21, no. 10, 84 p.

  11. Securaplane Technologies Inc. Wireless technology intra-aircraft wireless data bus for essential and critical applications, available at:

  12. Wireless sensor network for aircraft health monitoring. Honeywell Labs. 2004, available at: DOI: 10.1109/BROADNETS.2004.92

  13. Gurevich O.S., Gol’berg F.D., Zuev S.A., Busurin V.I. Trudy MAI, 2017, no. 93, available at:

  14. Kreiner A., Lietzau K. The use of onboard real-time models for jet engine control. MTU Aero Engines, Germany, 2004, available at:

  15. Legkonogikh D.S., Zelenin A.N. III Vserossiiskaya nauchno-prakticheskaya konferentsiya “Akademicheskie Zhukovskie chteniya”. Sbornik statei. (Voronezh, 25-26 noyabrya 2016), Voronezh, VUNTs VVS “VVA”, 2016. vol. 2, pp. 69 – 71.

  16. Gurevich O.S. Sistemy avtomaticheskogo upravleniya aviatsionnymi gazoturbinnymi dvigatelyami. Trudy TsIAM № 1346, Moscow, Torus Press, 2010, 264 p.

  17. Kontseptsiya SNTK im. N.D. Kuznetsova dlya GTD LA s polnym elektricheskim upravleniem, Aerokosmicheskoe obozrenie, 2006, no. 1, 155 p.

  18. Zrelov V.A. Otechestvennye gazoturbinnye dvigateli. Osnovnye parametry i konstruktivnye skhemy (Domestic gas turbine engines. Basic parameters and structural schemes: study guide), Moscow, Mashinostroenie, 2005, 336 p.

  19. Zelenin A.N., Legkonogikh D.S. Klimovskie chteniya – 2017. Perspektivnye napravleniya razvitiya aviadvigatelestroeniya. Sbornik statei. (Saint Petersburg, 20 Okt. 2017), Saint Petersburg, Skifiya-print, 2017, pp. 191 – 195.

  20. Kotel’nikov V.R., Khrobystova O.V., Zrelov V.A., Ponomarev V.A. Dvigateli boevykh samoletov Rossii (The engines of combat aircraft of Russia), Rybinsk, Mediarost, 2017, 616 p.

Download — informational site MAI

Copyright © 2000-2023 by MAI