Application of the clock mode to the propulsion system for a spacecraft high-precision orbital maneuvering and reorientation

Dynamics, ballistics, movement control of flying vehicles


Аuthors

Glushkov A. V., Ulybyshev S. Y.*

Central Scientific Research Institute of Chemistry and Mechanics, 16a, ul. Nagatinskaya, Moscow, 115487, Russia

*e-mail: wardoc5@rambler.ru

Abstract

The article sets forth the possibility of a clock mode operation of the propulsion system to solve effectively the problem of the spacecraft center of mass travel, as well as controlled rotation around it. Configuration of the propulsion system consisting of two triples of nominally equal liquid rocket engines with opposite directions of the resulting thrust vector located uniformly on the circumference of a given radius is under consideration. The said design solution allows effective fuel consumption to move the center of mass in space, and in conjunction with the mode of clock operation used to control the engine, ensured the high accuracy of the pulse. While the spacecraft reorienting, this algorithm allows make reversals and guidance of the selected axis in a specified direction, minimizing herewith the total increment of the characteristic speed, which leads to a linear movement of the center of mass, as well as parrying the growth of the kinetic moment along all three central axes of the spacecraft.

The article presents the description of the algorithm for the mode of clock operation of the propulsion system, as well as the results of mathematical modeling, confirming its performance and ensuring all the stated requirements. It was shown, that the problem of guidance and retention of the spacecraft selected axis in a specified direction was realized with minimum fuel consumption, and the linear travel of the center of mass was practically nonexistent. This are necessary conditions for the effective application of liquid-propellant rocket engines for a spacecraft reorientation, and this is highly demanded in practice.

Keywords:

spacecraft, propulsion system, liquid-propellant rocket engine, control algorithm, clock mode, thrust average level, parrying kinetic moment accumulation

References

  1. Platonov V.N. Kosmicheskaya tekhnika i tekhnologii, 2013, no. 1, pp. 58 – 67.

  2. Platonov V.N. Kosmicheskie issledovaniya, 2009, vol. 47, no. 3, pp. 263 – 270.

  3. Branets V.N., Zemskov E.F., Kovtun V.S., Platonov V.N., Shestakov A.V. Patent SU 2124461, 10.01.1999.

  4. Khodnenko V.P., Khromov A.V. Voprosy elektromekhaniki. Trudy VNIIEM, 2009, vol. 109, no. 4, pp. 27 – 32.

  5. Platov I.V., Simonov A.V. Konstantinov M.S. Vestnik NPO im S.A. Lavochkina, 2015, no. 4 (30), pp. 31 – 36.

  6. Lesnevskii V.A., Makhova L.I., Mikhailov M.V. et al. Izvestiya Tomskogo politekhnicheskogo universiteta, 2011, vol. 319, no. 4, pp. 144 – 147.

  7. Popov G.A., Konstantinov M.S., Petukhov V.G. Vestnik RFFI, 2006, no. 3 (47), pp. 16 – 19.

  8. Sinitsyn A.A. Kosmonavtika i raketostroenie, 2009, no.4 (57), pp. 95 – 108.

  9. Ulybyshev Yu.P. Kosmicheskie issledovaniya, 2012, vol. 50, no. 5, pp. 403 – 418.

  10. Michael A. Paluszek, George E. Piper, Jr. Spacecraft Attitude And Velocity Control System. Patent US5130931A Grant, United States assignee – General Electric Company, US07552638 Expired – Lifetime, 1990.07.13. Inventor.

  11. Ulybyshev S.Yu. XLI Akademicheskie chteniya po kosmonavtike, posvyashchennye pamyati S.P. Koroleva. Sbornik tezisov konferentsii, (Moscow, 24-27 yanvarya 2017), Moscow, MGTU im. N.E. Baumana, 2017, pp. 408 – 409.

  12. Glushkov A.V., Ulybyshev S.Yu. Nauchno-tekhnicheskaya konferentsiya «Innovatsionnye avtomaticheskie kosmicheskie apparaty dlya fundamental’nykh i prikladnykh issledovanii. Aktual’nye voprosy sozdaniya sluzhebnykh i nauchnykh sistem». Sbornik trudov, (Anapa, 06-11 sentyabrya 2015), Khimki, NPO im. S.A. Lavochkina, 2015, pp. 316 – 322.

  13. Glushkov A.V., Ulybyshev S.Yu. XL Vserossiiskie akademicheskie chteniya po kosmonavtike. Tezisy dokladov, (Moscow, 26-29 yanvarya 2016), Moscow, MGTU im. N.E. Baumana, 2016, pp. 355 – 356.

  14. Gavrilenko T.S., Glushkov A.V., Ulybyshev S.Yu. Patent SU 2610793, 15.02.2017.

  15. Sirant A.L., Titov B.A. Vestnik SGAU, 2007, no. 1 (12), pp. 98 – 105.

  16. Branets V.N., Kovtun V.S., Platonov V.N., Shestakov A.V. Patent SU 2112716, 13.05.1997

  17. Egorychev V.S., Sulinov A.V. Zhidkostnye raketnye dvigateli maloi tyagi i ikh kharakteristiki (Liquid rocket engines of small thrust and their characteristics), Samara, Izd-vo SGAU, 2014, 128 pp.

  18. Bogacheva D.Yu., Borovkin I.N. Trudy MAI, 2014, no. 73, available at: http://trudymai.ru/eng/published.php?ID=48483

  19. Belyaev E.N., Vorob’ev A.G., Gnesin E.M. Trudy MAI, 2014, no. 73, available at: http://trudymai.ru/eng/published.php?ID=48537

  20. Glushkov A.V., Ulybyshev S.Yu., Gavrilenko T.S. Patent SU 170380, 24.04.2017.

  21. Gavrilenko T.S., Glushkov A.V., Gorodilov Yu.V, Ulybyshev S.Yu., Khramov S.M. Patent SU 2659411, 02.07.2018.

  22. Murashko V.M., Kozubskii K.N., Vertakov N.M., Koryakin A.I. Vestnik NPO im. S.A. Lavochkina, 2015, no. 3 (29), pp. 32 – 36.


Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход