On reaction determining in connections of combined lifting member and control surfaces of low aspect ratio

Deformable body mechanics


Аuthors

Tleulinov M. K.*, Jafarzade A. **

Kazan National Research Technical University named after A.N. Tupolev, 10, Karl Marks str., Kazan, 420111, Russia

*e-mail: mktleulinov@kai.ru
**e-mail: amirjafarzade@mail.ru

Abstract

The article considers the combined structure, consisting of a lifting member and control surface, connected in three or more points, i.e. statically undefined manner. The reactions value of such structures is determined not so much by the external loading as by the displacement compatibility conditions of lifting member and control surface hinged to it. Thus, it matters how the structure is being modeled, and what design models are being employed. The issue of the interrelation of reactions in the control panels hinging nodes, obtained while modelling according to the beam and plate analogies at small aspect ratios is studied. It was established earlier that the difference in reactions, obtained with the rod and plate models, decreased with the structure aspect ratio increase. It was close to zero at medium and high aspect ratio. The presented article studies the issue on the interrelation of the reactions in the control panels hinging nodes, obtained while modelling according to the rod and plate analogies at small aspect ratio. The frontal (laying in the control surface plane) reactions are being evaluated. It was established, that with small aspect ratio the divergence of the rod and plate values of the frontal reactions depended greatly on the aspect ratio and relative thickness. With this, the less the aspect ratio, the greater the dependence from the relative thickness. The difference between the reactions decreases with the relative thickness increase.

Thus, there is no need to use the plate model while determining the reactions value in the control surface hinging nodes at the lifting member length to width ratio greater than two. If this ratio is less, this necessity occurs. With this, the less the aspect ratio, the more the need for the plate analogy.

Keywords:

lifting member, control surface, multi-member structure, reactions

References

  1. Na Y., Shin S. Equivalent plate analysis of a composite wing with a Control Surface, Journal of Aircraft, 2013, vol. 50, no. 3, pp. 853 – 862.

  2. Kim D., Bae J., Lee I., Han J. Dynamic model establishment of a deployable missile control fin with nonlinear hinge, Journal of Spacecraft and Rockets, 2005, vol. 42, no. 1, pp. 66 – 77.

  3. Stanford B.K. Optimization of an aeroservoelastic wing with distributed multiple control surfaces, Journal of Aircraft, 2016, vol. 53, vol. 4, pp. 1131 – 1144.

  4. Singh K.V., McDonough L.A., Kolonay R., Cooper J.E. Receptance based active aeroelastic control using multiple control surfaces, Journal of Aircraft, 2014, vol. 51, no. 1, pp. 335 – 342.

  5. Grossi R.O., Raffo J. Natural vibrations of anisotropic plates with several internal line hinges, Acta Mechanica, 2013, vol. 224, no. 11, pp. 2677 – 2697.

  6. Quintana M.V., Grossi R.O. Free vibrations of a generally restrained rectangular plate with an internal line hinge, Applied Acoustics, 2012, vol. 73, no. 4, pp. 356 – 365.

  7. Quintana M.V., Grossi R.O. Free vibrations of a trapezoidal plate with an internal line hinge, The Scientific World Journal, 2014, vol. 2014, Article ID 252084, 10 p.

  8. Riccobene L., Ricci S. Coupling equivalent plate and beam models at conceptual design level, Aircraft Engineering and Aerospace Technology, 2015, vol. 87, no. 1, pp. 2 – 10.

  9. Jiapeng T., Ping X., Baoyuan Z., Bifu H. A finite element parametric modeling technique of aircraft wing structures, Chinese Journal of Aeronautics, 2013, vol. 26, no. 5, pp. 1202 – 1210.

  10. Kuntjoro W., Mahmud J., Abdul Jalil A. M.H. Wing structure static analysis using superelement, Procedia Engineering, 2012, vol. 41, pp. 1600 – 1606.

  11. Rajamurugu N., Yaknesh S., Anbarasi J. Influence of control surfaces in aircraft wing control reversal problems-FEA and CFD analysis, Advances in Aerospace Science and Applications, 2013, vol. 3, no. 3, pp. 137 – 144.

  12. Komarov V.A., Kuznetsov A.S., Lapteva M.Yu. Trudy MAI, 2011, no. 43, available at: http://trudymai.ru/eng/published.php?ID=24759

  13. Okhotkin K.G. Naukoemkie tekhnologii, 2016, vol. 17, no. 5, pp. 35 – 42.

  14. Zagordan A.A. Trudy MAI, 2010, no. 38, available at: http://trudymai.ru/eng/published.php?ID=14145

  15. Zveryaev E.M. Trudy MAI, 2014, no. 78, available at: http://trudymai.ru/eng/published.php?ID=53459

  16. Gnezdilov V.A., Grishanina T.V., Nagornov A.Yu. Trudy MAI, 2017, no. 95, available at: http://trudymai.ru/eng/published.php?ID=84435

  17. Popov V.V., Sorokin F.D., Ivannikov V.V. Trudy MAI, 2017, no. 92, available at: http://trudymai.ru/eng/published.php?ID=76832

  18. Pavlov V.A. Mekhanika aviakonstruktsii: Statika, ustoichivost’, katastrofy (Mechanics of Aircraft Structures: Statics, Stability, Catastrophes), Kazan’, Izd-vo Kazan. gos. tekhn. un-ta, 1999, 162 p.

  19. Pavlov V.A. Izvestiya vuzov. Aviatsionnaya tekhnika, 1974, no. 1, pp. 72 – 76.

  20. Pavlov V.A. Izvestiya vuzov. Aviatsionnaya tekhnika, 1976, no. 2, pp. 66 – 67.

  21. Pavlov V.A., Polyakov Yu.A. Opredelenie osevykh sil v uzlakh naveski rulei. Prochnost’, ustoichivost’ i kolebaniya tonkostennykh i monolitnykh aviatsionnykh konstruktsii (Axial forces determination in hinge fittings of control surfaces. Strength, stability and vibrations of thin-walled and monolithic aircraft structures), Kazan’, Kazanskii aviatsionnyi institut im. A.N. Tupoleva, 1978, pp. 47 – 51.

  22. Tleulinov M.K. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A.N.Tupoleva, 2014, no 2, pp. 7 – 12.

  23. Tleulinov M.K., Kuznetsov V.A. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2014, vol. 17, no. 8, pp. 15 – 17.

  24. Tleulinov M.K. XX Mezhdunarodnyi simpozium “Dinamicheskie i tekhnologicheskie problemy mekhaniki konstruktsii i sploshnykh sred” imeni A.G. Gorshkova (Yaropolets, 17-21 February 2014), Moscow, Izd-vo MAI, 2004, p. 199.

  25. Van’ko V.I., Ermoshina O.V., Kuvyrkin G.N. Variatsionnoe ischislenie i optimal’noe upravlenie (The calculus of variations and optimal control), Moscow, Izd-vo MGTU im. N.E. Baumana, 2001, 488 s.

  26. Smirnov V.I. Kurs vysshei matematiki (Course of higher mathematics), Moscow, Gos. izd-vo tekhniko-teoreticheskoi literatury, 1953, vol. 1, 472 p.

  27. Gallager R. Metod konechnykh elementov. Osnovy (Finite Element Analysis. Fundamentals), Moscow, Mir, 1984, 428 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход